peon/src/frontend/compiler.nim

1323 lines
49 KiB
Nim
Raw Normal View History

# Copyright 2022 Mattia Giambirtone & All Contributors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import meta/token
import meta/ast
import meta/errors
import meta/bytecode
import ../config
import ../util/multibyte
import strformat
import algorithm
import parseutils
import sequtils
import strutils
export ast
export bytecode
export token
export multibyte
type
TypeKind = enum
## An enumeration of compile-time
## types
Int8, UInt8, Int16, UInt16, Int32,
UInt32, Int64, UInt64, Float32, Float64,
Char, Byte, String, Function, CustomType,
Dict, List, Tuple, Set, Nil, Nan, Bool,
Inf
Type = ref object
## A wrapper around
## compile-time types
node: ASTNode
case kind: TypeKind:
of Function:
returnType: Type
of List, Tuple, Set:
memberType: Type
of Dict:
keyType: Type
valueType: Type
else:
discard
Name = ref object
## A compile-time wrapper around
## statically resolved names.
## Depth indicates to which scope
## the variable belongs, zero meaning
## the global one
name: IdentExpr # Name of the identifier
owner: string # Owner of the identifier
depth: int # Scope depth
isPrivate: bool # Is this name private?
isConst: bool # Is this a constant?
isLet: bool # Can this name's value be mutated?
valueType: Type # The name's type
codePos: int # The position in the bytecode
# where this name's StoreVar
# instruction was emitted. This
# is kept so that once we detect
# this name as a closed-over variable
# we can change the StoreVar into a StoreHeap
Loop = object
## A "loop object" used
## by the compiler to emit
## appropriate jump offsets
## for continue and break
## statements
start: int # Position in the bytecode where the loop starts
depth: int # Scope depth where the loop is located
breakPos: seq[int] # List of positions where
Compiler* = ref object
## A wrapper around the compiler's state
# The bytecode chunk where we write code to
chunk: Chunk
# The output of our parser (AST)
ast: seq[ASTNode]
# The current AST node we're looking at
current: int
# The current file being compiled (used only for
# error reporting)
file: string
# Compile-time "simulation" of the stack at
# runtime to load variables that have stack
# behavior more efficiently
names: seq[Name]
# The current scope depth. If > 0, we're
# in a local scope, otherwise it's global
scopeDepth: int
# The current function being compiled
currentFunction: FunDecl
# Are optimizations turned on?
enableOptimizations*: bool
# The current loop being compiled (used to
# keep track of where to jump)
currentLoop: Loop
# The current module being compiled
# (used to restrict access to statically
# defined variables at compile time)
currentModule: string
# Each time a defer statement is
# compiled, its code is emitted
# here. Later, if there is any code
# to defer in the current function,
# funDecl will wrap the function's code
# inside an implicit try/finally block
# and add this code in the finally branch.
# This sequence is emptied each time a
# fun declaration is compiled and stores only
# deferred code for the current function (may
# be empty)
deferred: seq[uint8]
# List of closed-over variables
closedOver: seq[IdentExpr]
2022-04-11 14:41:20 +02:00
proc newCompiler*(enableOptimizations: bool = true): Compiler =
## Initializes a new Compiler object
new(result)
result.ast = @[]
result.current = 0
result.file = ""
result.names = @[]
result.scopeDepth = 0
result.currentFunction = nil
result.enableOptimizations = enableOptimizations
result.currentModule = ""
## Forward declarations
proc expression(self: Compiler, node: ASTNode)
proc statement(self: Compiler, node: ASTNode)
proc declaration(self: Compiler, node: ASTNode)
proc peek(self: Compiler, distance: int = 0): ASTNode
proc identifier(self: Compiler, node: IdentExpr)
proc varDecl(self: Compiler, node: VarDecl)
proc inferValueType(self: Compiler, node: ASTNode): Type
proc inferExprType(self: Compiler, node: ASTNode): Type
## End of forward declarations
## Public getter for nicer error formatting
proc getCurrentNode*(self: Compiler): ASTNode = (if self.current >=
self.ast.len(): self.ast[^1] else: self.ast[self.current - 1])
## Utility functions
proc peek(self: Compiler, distance: int = 0): ASTNode =
## Peeks at the AST node at the given distance.
## If the distance is out of bounds, the last
## AST node in the tree is returned. A negative
## distance may be used to retrieve previously
## consumed AST nodes
if self.ast.high() == -1 or self.current + distance > self.ast.high() or
self.current + distance < 0:
result = self.ast[^1]
else:
result = self.ast[self.current + distance]
proc done(self: Compiler): bool =
## Returns true if the compiler is done
## compiling, false otherwise
result = self.current > self.ast.high()
proc error(self: Compiler, message: string) {.raises: [CompileError, ValueError].} =
## Raises a formatted CompileError exception
var tok = self.getCurrentNode().token
raise newException(CompileError, &"A fatal error occurred while compiling '{self.file}', module '{self.currentModule}' line {tok.line} at '{tok.lexeme}' -> {message}")
proc step(self: Compiler): ASTNode =
## Steps to the next node and returns
## the consumed one
result = self.peek()
if not self.done():
self.current += 1
proc emitByte(self: Compiler, byt: OpCode|uint8) =
## Emits a single byte, writing it to
## the current chunk being compiled
when DEBUG_TRACE_COMPILER:
echo &"DEBUG - Compiler: Emitting {$byt}"
self.chunk.write(uint8 byt, self.peek().token.line)
proc emitBytes(self: Compiler, byt1: OpCode|uint8, byt2: OpCode|uint8) =
## Emits multiple bytes instead of a single one. This is useful
## to emit operators along with their operands or for multi-byte
## instructions that are longer than one byte
self.emitByte(uint8 byt1)
self.emitByte(uint8 byt2)
proc emitBytes(self: Compiler, bytarr: array[2, uint8]) =
## Handy helper method to write an array of 2 bytes into
## the current chunk, calling emitByte on each of its
## elements
self.emitBytes(bytarr[0], bytarr[1])
proc emitBytes(self: Compiler, bytarr: array[3, uint8]) =
## Handy helper method to write an array of 3 bytes into
## the current chunk, calling emitByte on each of its
## elements
self.emitBytes(bytarr[0], bytarr[1])
self.emitByte(bytarr[2])
proc makeConstant(self: Compiler, val: LiteralExpr): array[3, uint8] =
## Adds a constant to the current chunk's constant table
## and returns its index as a 3-byte array of uint8s
result = self.chunk.addConstant(val)
proc emitConstant(self: Compiler, obj: LiteralExpr) =
## Emits a LoadConstant instruction along
## with its operand
case self.inferExprType(obj).kind:
of Int64:
self.emitByte(LoadInt64)
else:
discard # TODO
self.emitBytes(self.makeConstant(obj))
proc emitJump(self: Compiler, opcode: OpCode): int =
## Emits a dummy jump offset to be patched later. Assumes
## the largest offset (emits 4 bytes, one for the given jump
## opcode, while the other 3 are for the jump offset which is set
## to the maximum unsigned 24 bit integer). If the shorter
## 16 bit alternative is later found to be better suited, patchJump
## will fix this. This function returns the absolute index into the
## chunk's bytecode array where the given placeholder instruction was written
self.emitByte(opcode)
self.emitBytes((0xffffff).toTriple())
result = self.chunk.code.len() - 4
proc patchJump(self: Compiler, offset: int) =
## Patches a previously emitted relative
## jump using emitJump. Since emitJump assumes
## a long jump, this also shrinks the jump
## offset and changes the bytecode instruction if possible
## (i.e. jump is in 16 bit range), but the converse is also
## true (i.e. it might change a regular jump into a long one)
let jump: int = self.chunk.code.len() - offset
if jump > 16777215:
self.error("cannot jump more than 16777216 bytecode instructions")
if jump < uint16.high().int:
case OpCode(self.chunk.code[offset]):
of LongJumpForwards:
self.chunk.code[offset] = JumpForwards.uint8()
of LongJumpBackwards:
self.chunk.code[offset] = JumpBackwards.uint8()
of LongJumpIfFalse:
self.chunk.code[offset] = JumpIfFalse.uint8()
of LongJumpIfFalsePop:
self.chunk.code[offset] = JumpIfFalsePop.uint8()
of LongJumpIfFalseOrPop:
self.chunk.code[offset] = JumpIfFalseOrPop.uint8()
else:
discard
self.chunk.code.delete(offset + 1) # Discards the first 8 bits of the jump offset (which are empty)
let offsetArray = (jump - 1).toDouble() # -1 since we got rid of 1 byte!
self.chunk.code[offset + 1] = offsetArray[0]
self.chunk.code[offset + 2] = offsetArray[1]
else:
case OpCode(self.chunk.code[offset]):
of JumpForwards:
self.chunk.code[offset] = LongJumpForwards.uint8()
of JumpBackwards:
self.chunk.code[offset] = LongJumpBackwards.uint8()
of JumpIfFalse:
self.chunk.code[offset] = LongJumpIfFalse.uint8()
of JumpIfFalsePop:
self.chunk.code[offset] = LongJumpIfFalsePop.uint8()
of JumpIfFalseOrPop:
self.chunk.code[offset] = LongJumpIfFalseOrPop.uint8()
else:
discard
let offsetArray = jump.toTriple()
self.chunk.code[offset + 1] = offsetArray[0]
self.chunk.code[offset + 2] = offsetArray[1]
self.chunk.code[offset + 3] = offsetArray[2]
proc resolve(self: Compiler, name: IdentExpr,
depth: int = self.scopeDepth): Name =
## Traverses self.names backwards and returns the
## first name object with the given name. Returns
## nil when the name can't be found. This function
## has no concept of scope depth, because getStackPos
## does that job. Note that private names declared in
## other modules will not be resolved!
for obj in reversed(self.names):
if obj.name.token.lexeme == name.token.lexeme:
if obj.isPrivate and obj.owner != self.currentModule:
continue # There may be a name in the current module that
# matches, so we skip this
return obj
return nil
proc getStackPos(self: Compiler, name: IdentExpr, depth: int = self.scopeDepth): tuple[closedOver: bool, pos: int] =
## Iterates the internal list of declared names backwards and
## returns a tuple (closedOver, pos) that tells the caller whether the
## the name is to be emitted as a closure as well as its predicted
## stack/closure array position. Returns (false, -1) if the variable's
## location can not be determined at compile time (this is an error!).
## Note that private names declared in other modules will not be resolved!
var i: int = self.names.high()
for variable in reversed(self.names):
if name.name.lexeme == variable.name.name.lexeme:
if variable.isPrivate and variable.owner != self.currentModule:
continue
if variable.depth == depth or variable.depth == 0:
# variable.depth == 0 for globals!
return (false, i)
elif variable.depth > 0:
for j, closure in reversed(self.closedOver):
if closure.name.lexeme == name.name.lexeme:
return (true, j)
dec(i)
return (false, -1)
proc detectClosureVariable(self: Compiler, name: IdentExpr, depth: int = self.scopeDepth) =
## Detects if the given name is used in a local scope deeper
## than the given one and modifies the code emitted for it
## to store it as a closure variable if it is. Does nothing if the name
## hasn't been declared yet or is unreachable (for example if it's
## declared as private in another module), if the name itself is a
## global variable and if either the current or the outer scope are
## the global (outermost) one. This function must be called each
## time a name is referenced in order for closed-over variables
## to be emitted properly, otherwise the runtime may behave
## unpredictably or crash
if depth == 0 or depth - 1 == 0:
return
let entry = self.resolve(name)
if entry == nil:
return
if entry.depth == 0:
return
if entry.depth < depth:
# Ding! The given name is closed over: we need to
# change the StoreVar instruction that created this
# name entry into a StoreHeap. We don't need to change
# other pieces of code because self.identifier() already
# emits LoadHeap if it detects the variable is closed over,
# whether or not this function is called
self.closedOver.add(entry.name)
if self.closedOver.len() >= 16777216:
self.error("too many consecutive closure-over variables (max is 16777216)")
let idx = self.closedOver.high().toTriple()
self.chunk.code[entry.codePos] = StoreHeap.uint8
self.chunk.code[entry.codePos + 1] = idx[0]
self.chunk.code[entry.codePos + 2] = idx[1]
self.chunk.code[entry.codePos + 3] = idx[2]
proc toIntrinsic(name: string): Type =
## Converts a string to an intrinsic
## type if it is valid and returns nil
## otherwise
if name in ["int", "int64", "i64"]:
return Type(kind: Int64)
elif name in ["uint64", "u64"]:
return Type(kind: UInt64)
elif name in ["int32", "i32"]:
return Type(kind: Int32)
elif name in ["uint32", "u32"]:
return Type(kind: UInt32)
elif name in ["int16", "i16"]:
return Type(kind: Int16)
elif name in ["uint16", "u16"]:
return Type(kind: UInt16)
elif name in ["int8", "i8"]:
return Type(kind: Int8)
elif name in ["uint8", "u8"]:
return Type(kind: UInt8)
elif name in ["f64", "float", "float64"]:
return Type(kind: Float64)
elif name in ["f32", "float32"]:
return Type(kind: Float32)
elif name == "byte":
return Type(kind: Byte)
elif name == "char":
return Type(kind: Char)
elif name == "nan":
return Type(kind: Nan)
elif name == "nil":
return Type(kind: Nil)
elif name == "inf":
return Type(kind: Inf)
elif name == "bool":
return Type(kind: Bool)
else:
return nil
proc toIntrinsic(typ: Expression): Type =
## Gets an expression's
## intrinsic type, if possible
if typ == nil:
return nil
case typ.kind:
of identExpr:
return typ.token.lexeme.toIntrinsic()
else:
discard
proc inferValueType(self: Compiler, node: ASTNode): Type =
## Infers the type of a given literal expression
case node.kind:
of listExpr:
return Type(kind: List, memberType: self.inferExprType(ListExpr(node).valueType))
of tupleExpr:
return Type(kind: Tuple, memberType: self.inferExprType(TupleExpr(node).valueType))
of setExpr:
return Type(kind: Set, memberType: self.inferExprType(SetExpr(node).valueType))
of dictExpr:
let node = DictExpr(node)
return Type(kind: Dict, keyType: self.inferExprType(node.valueType), valueType: self.inferExprType(node.valueType))
of intExpr, binExpr, octExpr, hexExpr:
let node = LiteralExpr(node)
let size = node.token.lexeme.split("'")
if len(size) notin 1..2:
self.error("invalid state: inferValueType -> invalid size specifier (This is an internal error and most likely a bug!)")
if size.len() == 1:
return Type(kind: Int64)
let typ = size[1].toIntrinsic()
if typ != nil:
return typ
else:
self.error(&"invalid type specifier '{size[1]}' for int")
of floatExpr:
let node = LiteralExpr(node)
let size = node.token.lexeme.split("'")
if len(size) notin 1..2:
self.error("invalid state: inferValueType -> invalid size specifier (This is an internal error and most likely a bug!)")
if size.len() == 1 or size[1] == "f64":
return Type(kind: Float64)
let typ = size[1].toIntrinsic()
if typ != nil:
return typ
else:
self.error(&"invalid type specifier '{size[1]}' for float")
of nilExpr:
return Type(kind: Nil)
of trueExpr:
return Type(kind: Bool)
of falseExpr:
return Type(kind: Bool)
of nanExpr:
return Type(kind: Nan)
of infExpr:
return Type(kind: Inf)
else:
discard # TODO
proc inferExprType(self: Compiler, node: ASTNode): Type =
## Infers the type of a given expression and
## returns it
case node.kind:
of identExpr:
var node = IdentExpr(node)
var name = self.resolve(node)
return name.valueType
of unaryExpr:
return self.inferValueType(UnaryExpr(node).a)
of binaryExpr:
var node = BinaryExpr(node)
var a = self.inferExprType(node.a)
var b = self.inferExprType(node.b)
if a == nil or b == nil:
return nil
return a
of {intExpr, hexExpr, binExpr, octExpr,
strExpr, falseExpr, trueExpr, infExpr,
nanExpr, floatExpr, nilExpr, listExpr,
dictExpr, setExpr, tupleExpr
}:
return self.inferValueType(node)
else:
discard # Unreachable
proc inferDeclType(self: Compiler, node: Declaration): Type =
## Infers the type of a given declaration if it's
## not already defined and returns it
case node.kind:
of funDecl:
var node = FunDecl(node)
let resolved = self.resolve(node.name)
if resolved != nil:
return resolved.valueType
of NodeKind.varDecl:
var node = VarDecl(node)
let resolved = self.resolve(node.name)
if resolved != nil:
return resolved.valueType
else:
return self.inferExprType(node.value)
else:
return # Unreachable
proc typeToStr(self: Compiler, typ: Type): string =
case typ.kind:
of {Int8, UInt8, Int16, UInt16, Int32,
UInt32, Int64, UInt64, Float32, Float64,
Char, Byte, String, Nil, Nan, Bool, Inf}:
return ($typ.kind).toLowerAscii()
of Function:
result = "function ("
case typ.node.kind:
of funDecl:
var node = FunDecl(typ.node)
for i, argument in node.arguments:
result &= &"{argument.name.token.lexeme}: {self.typeToStr(self.inferExprType(argument.name))}"
if i < node.arguments.len():
result &= ", "
result &= ")"
of lambdaExpr:
var node = LambdaExpr(typ.node)
for i, argument in node.arguments:
result &= &"{argument.name.token.lexeme}: {argument.valueType}"
if i < node.arguments.len():
result &= ", "
result &= ")"
else:
discard # Unreachable
of List, Tuple, Set:
result &= &"{($typ.kind).toLowerAscii()}["
of Dict:
result &= &"{($typ.kind).toLowerAscii()}[]"
else:
discard
proc `==`(self, other: Type): bool =
if system.`==`(self, nil):
return system.`==`(other, nil)
elif system.`==`(other, nil):
return system.`==`(self, nil)
if self.kind != other.kind:
return false
case self.kind:
of {Int8, UInt8, Int16, UInt16, Int32,
UInt32, Int64, UInt64, Float32, Float64,
Char, Byte, String, Nil, Nan, Bool, Inf}:
return true
of Function:
discard # TODO
of List, Tuple, Set:
return self.memberType == other.memberType
of Dict:
return self.keyType == other.keyType and self.valueType == other.valueType
else:
discard
## End of utility functions
proc literal(self: Compiler, node: ASTNode) =
## Emits instructions for literals such
## as singletons, strings, numbers and
## collections
case node.kind:
of trueExpr:
self.emitByte(OpCode.True)
of falseExpr:
self.emitByte(OpCode.False)
of nilExpr:
self.emitByte(OpCode.Nil)
of infExpr:
self.emitByte(OpCode.Inf)
of nanExpr:
self.emitByte(OpCode.Nan)
of strExpr:
self.emitConstant(LiteralExpr(node))
of intExpr:
var x: int
var y = IntExpr(node)
try:
discard parseInt(y.literal.lexeme, x)
except ValueError:
self.error("integer value out of range")
self.emitConstant(y)
of hexExpr:
var x: int
var y = HexExpr(node)
try:
discard parseHex(y.literal.lexeme, x)
except ValueError:
self.error("integer value out of range")
self.emitConstant(newIntExpr(Token(lexeme: $x, line: y.token.line,
pos: (start: y.token.pos.start, stop: y.token.pos.start +
len($x)))))
of binExpr:
var x: int
var y = BinExpr(node)
try:
discard parseBin(y.literal.lexeme, x)
except ValueError:
self.error("integer value out of range")
self.emitConstant(newIntExpr(Token(lexeme: $x, line: y.token.line,
pos: (start: y.token.pos.start, stop: y.token.pos.start +
len($x)))))
of octExpr:
var x: int
var y = OctExpr(node)
try:
discard parseOct(y.literal.lexeme, x)
except ValueError:
self.error("integer value out of range")
self.emitConstant(newIntExpr(Token(lexeme: $x, line: y.token.line,
pos: (start: y.token.pos.start, stop: y.token.pos.start +
len($x)))))
of floatExpr:
var x: float
var y = FloatExpr(node)
try:
discard parseFloat(y.literal.lexeme, x)
except ValueError:
self.error("floating point value out of range")
self.emitConstant(y)
of listExpr:
var y = ListExpr(node)
if y.members.len() > 16777216:
self.error("list literals can't have more than 16777216 elements")
for member in y.members:
self.expression(member)
self.emitByte(BuildList)
self.emitBytes(y.members.len().toTriple()) # 24-bit integer, meaning collection literals can have up to 2^24 elements
of tupleExpr:
var y = TupleExpr(node)
if y.members.len() > 16777216:
self.error("tuple literals can't have more than 16777216 elements")
for member in y.members:
self.expression(member)
self.emitByte(BuildTuple)
self.emitBytes(y.members.len().toTriple())
of setExpr:
var y = SetExpr(node)
if y.members.len() > 16777216:
self.error("set literals can't have more than 16777216 elements")
for member in y.members:
self.expression(member)
self.emitByte(BuildSet)
self.emitBytes(y.members.len().toTriple())
of dictExpr:
var y = DictExpr(node)
if y.keys.len() > 16777216:
self.error("dict literals can't have more than 16777216 elements")
for (key, value) in zip(y.keys, y.values):
self.expression(key)
self.expression(value)
self.emitByte(BuildDict)
self.emitBytes(y.keys.len().toTriple())
of awaitExpr:
var y = AwaitExpr(node)
self.expression(y.expression)
self.emitByte(OpCode.Await)
else:
self.error(&"invalid AST node of kind {node.kind} at literal(): {node} (This is an internal error and most likely a bug!)")
proc unary(self: Compiler, node: UnaryExpr) =
## Compiles unary expressions such as decimal or
## bitwise negation
self.expression(node.a) # Pushes the operand onto the stack
case node.operator.kind:
of Minus:
self.emitByte(NoOp)
of Plus:
self.emitByte(NoOp)
of TokenType.LogicalNot:
self.emitByte(NoOp)
of Tilde:
self.emitByte(NoOp)
else:
self.error(&"invalid AST node of kind {node.kind} at unary(): {node} (This is an internal error and most likely a bug!)")
proc binary(self: Compiler, node: BinaryExpr) =
## Compiles all binary expressions
# These two lines prepare the stack by pushing the
# opcode's operands onto it
self.expression(node.a)
self.expression(node.b)
# TODO: Find implementation of
# the given operator and call it
case node.operator.kind:
of Plus:
# a + b
self.emitByte(NoOp)
of Minus:
# a - b
self.emitByte(NoOp)
of Star:
# a * b
self.emitByte(NoOp)
of DoubleStar:
# a ** b
self.emitByte(NoOp)
of Percentage:
# a % b
self.emitByte(NoOp)
of FloorDiv:
# a // b
self.emitByte(NoOp)
of Slash:
# a / b
self.emitByte(NoOp)
of Ampersand:
# a & b
self.emitByte(NoOp)
of Caret:
# a ^ b
self.emitByte(NoOp)
of Pipe:
# a | b
self.emitByte(NoOp)
of Is:
# a is b
self.emitByte(NoOp)
of IsNot:
# a isnot b
self.emitByte(NoOp)
of Of:
# a of b
self.emitByte(NoOp)
of As:
# a as b
self.emitByte(NoOp)
of RightShift:
# a >> b
self.emitByte(NoOp)
of LeftShift:
# a << b
self.emitByte(NoOp)
of LessThan:
# a < b
self.emitByte(NoOp)
of GreaterThan:
# a > b
self.emitByte(NoOp)
of DoubleEqual:
# a == b
self.emitByte(NoOp)
of LessOrEqual:
# a <= b
self.emitByte(NoOp)
of GreaterOrEqual:
# a >= b
self.emitByte(NoOp)
of LogicalAnd:
# a and b
self.expression(node.a)
var jump: int
if self.enableOptimizations:
jump = self.emitJump(JumpIfFalseOrPop)
else:
jump = self.emitJump(JumpIfFalse)
self.emitByte(Pop)
self.expression(node.b)
self.patchJump(jump)
of LogicalOr:
# a or b
self.expression(node.a)
let jump = self.emitJump(JumpIfTrue)
self.expression(node.b)
self.patchJump(jump)
else:
self.error(&"invalid AST node of kind {node.kind} at binary(): {node} (This is an internal error and most likely a bug!)")
proc declareName(self: Compiler, node: Declaration) =
## Statically declares a name into the current scope
case node.kind:
of NodeKind.varDecl:
var node = VarDecl(node)
# Creates a new Name entry so that self.identifier emits the proper stack offset
if self.names.high() > 16777215:
# If someone ever hits this limit in real-world scenarios, I swear I'll
# slap myself 100 times with a sign saying "I'm dumb". Mark my words
2022-04-26 16:22:23 +02:00
self.error("cannot declare more than 16777216 variables at a time")
self.names.add(Name(depth: self.scopeDepth,
name: node.name,
isPrivate: node.isPrivate,
owner: self.currentModule,
isConst: node.isConst,
valueType: Type(kind: self.inferExprType(node.value).kind, node: node),
codePos: self.chunk.code.len(),
isLet: node.isLet))
self.emitByte(StoreVar)
self.emitBytes(self.names.high().toTriple())
of NodeKind.funDecl:
var node = FunDecl(node)
# Declares the function's name in the
# current scope but no StoreVar is emitted
# because a function's name is only useful
# at compile time and has no runtime meaning
# given that we implement functions with jumps
self.names.add(Name(depth: self.scopeDepth,
isPrivate: node.isPrivate,
isConst: false,
owner: self.currentModule,
valueType: Type(kind: Function, node: node),
codePos: -1,
name: node.name,
isLet: false))
for argument in node.arguments:
if self.names.high() > 16777215:
2022-04-26 16:22:23 +02:00
self.error("cannot declare more than 16777216 variables at a time")
self.names.add(Name(depth: self.scopeDepth + 1,
isPrivate: true,
owner: self.currentModule,
isConst: false,
name: argument.name,
valueType: self.inferExprType(argument.name),
codePos: self.chunk.code.len(),
isLet: false))
self.emitByte(StoreVar)
self.emitBytes(self.names.high().toTriple())
# TODO: Default arguments and unpacking
else:
discard # Unreachable
proc identifier(self: Compiler, node: IdentExpr) =
## Compiles access to identifiers
let s = self.resolve(node)
if s == nil:
self.error(&"reference to undeclared name '{node.token.lexeme}'")
elif s.isConst:
# Constants are emitted as, you guessed it, LoadConstant instructions
# no matter the scope depth. If optimizations are enabled, the compiler
# will reuse the same constant every time it is referenced instead of
# allocating a new one each time
self.emitConstant(node)
else:
self.detectClosureVariable(s.name)
let t = self.getStackPos(node)
let index = t.pos
# We don't check if index is -1 because if it
# were, self.resolve() would have returned nil
if not t.closedOver:
# Static name resolution, loads value at index in the stack. Very fast. Much wow.
self.emitByte(LoadVar)
self.emitBytes(index.toTriple())
else:
if self.closedOver.len() == 0:
self.error("error: closure variable array is empty but LoadHeap would be emitted (this is an internal error and most likely a bug)")
# Heap-allocated closure variable. Stored in a separate "closure array" in the VM that does not have stack semantics.
# This makes closures work as expected and is not comparatively slower than indexing our stack (since they're both
# dynamic arrays at runtime anyway)
self.emitByte(LoadHeap)
self.emitBytes(self.closedOver.high().toTriple())
proc assignment(self: Compiler, node: ASTNode) =
## Compiles assignment expressions
case node.kind:
of assignExpr:
var node = AssignExpr(node)
let name = IdentExpr(node.name)
let r = self.resolve(name)
if r == nil:
self.error(&"assignment to undeclared name '{node.name}'")
elif r.isConst:
self.error(&"cannot assign to '{node.name}'")
elif r.isLet:
self.error(&"cannot reassign '{node.name}'")
self.expression(node.value)
let t = self.getStackPos(name)
let index = t.pos
case node.token.kind:
of InplaceAdd:
self.emitByte(NoOp)
of InplaceSub:
self.emitByte(NoOp)
of InplaceDiv:
self.emitByte(NoOp)
of InplaceMul:
self.emitByte(NoOp)
of InplacePow:
self.emitByte(NoOp)
of InplaceFloorDiv:
self.emitByte(NoOp)
of InplaceMod:
self.emitByte(NoOp)
of InplaceAnd:
self.emitByte(NoOp)
of InplaceXor:
self.emitByte(NoOp)
of InplaceRightShift:
self.emitByte(NoOp)
of InplaceLeftShift:
self.emitByte(NoOp)
else:
discard # Unreachable
# In-place operators just change
# what values is set to a given
# offset in a dynamic array, so we only
# need to perform the operation as usual
# and then store it. We could combine
# everything into a single opcode, but
# that would require variants of each
# one for regular stack variables as
# well as closed-over ones
if index != -1:
if not t.closedOver:
self.emitByte(StoreVar)
else:
self.emitByte(StoreHeap)
self.emitBytes(index.toTriple())
else:
self.error(&"reference to undeclared name '{node.token.lexeme}'")
of setItemExpr:
discard
# TODO
else:
self.error(&"invalid AST node of kind {node.kind} at assignment(): {node} (This is an internal error and most likely a bug)")
proc beginScope(self: Compiler) =
## Begins a new local scope by incrementing the current
## scope's depth
inc(self.scopeDepth)
proc endScope(self: Compiler) =
## Ends the current local scope
if self.scopeDepth < 0:
self.error("cannot call endScope with scopeDepth < 0 (This is an internal error and most likely a bug)")
var popped: int = 0
for ident in reversed(self.names):
if ident.depth > self.scopeDepth:
inc(popped)
if not self.enableOptimizations:
# All variables with a scope depth larger than the current one
# are now out of scope. Begone, you're now homeless!
self.emitByte(Pop)
if self.enableOptimizations and popped > 1:
# If we're popping less than 65535 variables, then
# we can emit a PopN instruction. This is true for
# 99.99999% of the use cases of the language (who the
# hell is going to use 65 THOUSAND local variables?), but
# if you'll ever use more then JAPL will emit a PopN instruction
# for the first 65 thousand and change local variables and then
# emit another batch of plain ol' Pop instructions for the rest
if popped <= uint16.high().int():
self.emitByte(PopN)
self.emitBytes(popped.toDouble())
else:
self.emitByte(PopN)
self.emitBytes(uint16.high().int.toDouble())
for i in countdown(self.names.high(), popped - uint16.high().int()):
if self.names[i].depth > self.scopeDepth:
self.emitByte(Pop)
elif popped == 1:
# We only emit PopN if we're popping more than one value
self.emitByte(Pop)
for _ in countup(0, popped - 1):
discard self.names.pop()
dec(self.scopeDepth)
proc blockStmt(self: Compiler, node: BlockStmt) =
## Compiles block statements, which create a new
## local scope.
self.beginScope()
for decl in node.code:
self.declaration(decl)
self.endScope()
proc ifStmt(self: Compiler, node: IfStmt) =
## Compiles if/else statements for conditional
## execution of code
self.expression(node.condition)
var jumpCode: OpCode
if self.enableOptimizations:
jumpCode = JumpIfFalsePop
else:
jumpCode = JumpIfFalse
let jump = self.emitJump(jumpCode)
if not self.enableOptimizations:
self.emitByte(Pop)
self.statement(node.thenBranch)
self.patchJump(jump)
if node.elseBranch != nil:
let jump = self.emitJump(JumpForwards)
self.statement(node.elseBranch)
self.patchJump(jump)
proc emitLoop(self: Compiler, begin: int) =
## Emits a JumpBackwards instruction with the correct
## jump offset
var offset: int
case OpCode(self.chunk.code[begin + 1]): # The jump instruction
of LongJumpForwards, LongJumpBackwards, LongJumpIfFalse,
LongJumpIfFalsePop, LongJumpIfTrue:
offset = self.chunk.code.len() - begin + 4
else:
offset = self.chunk.code.len() - begin
if offset > uint16.high().int:
if offset > 16777215:
self.error("cannot jump more than 16777215 bytecode instructions")
self.emitByte(LongJumpBackwards)
self.emitBytes(offset.toTriple())
else:
self.emitByte(JumpBackwards)
self.emitBytes(offset.toDouble())
proc whileStmt(self: Compiler, node: WhileStmt) =
## Compiles C-style while loops
let start = self.chunk.code.len()
self.expression(node.condition)
let jump = self.emitJump(JumpIfFalsePop)
self.statement(node.body)
self.patchJump(jump)
self.emitLoop(start)
proc expression(self: Compiler, node: ASTNode) =
## Compiles all expressions
if self.inferExprType(node) == nil:
2022-05-02 12:38:43 +02:00
if node.kind != identExpr:
# So we can raise a more appropriate
# error in self.identifier()
self.error("expression has no type")
case node.kind:
of getItemExpr:
discard # TODO
# Note that for setItem and assign we don't convert
# the node to its true type because that type information
# would be lost in the call anyway. The differentiation
# happens in self.assignment
of setItemExpr, assignExpr:
self.assignment(node)
of identExpr:
self.identifier(IdentExpr(node))
of unaryExpr:
# Unary expressions such as ~5 and -3
self.unary(UnaryExpr(node))
of groupingExpr:
# Grouping expressions like (2 + 1)
self.expression(GroupingExpr(node).expression)
of binaryExpr:
# Binary expressions such as 2 ^ 5 and 0.66 * 3.14
self.binary(BinaryExpr(node))
of intExpr, hexExpr, binExpr, octExpr, strExpr, falseExpr, trueExpr,
infExpr, nanExpr, floatExpr, nilExpr, tupleExpr, setExpr, listExpr,
dictExpr:
# Since all of these AST nodes mostly share
# the same overall structure, and the kind
# discriminant is enough to tell one
# from the other, why bother with
# specialized cases when one is enough?
self.literal(node)
else:
self.error(&"invalid AST node of kind {node.kind} at expression(): {node} (This is an internal error and most likely a bug)")
proc awaitStmt(self: Compiler, node: AwaitStmt) =
## Compiles await statements. An await statement
## is like an await expression, but parsed in the
## context of statements for usage outside expressions,
## meaning it can be used standalone. It's basically the
## same as an await expression followed by a semicolon.
## Await expressions are the only native construct to
## run coroutines from within an already asynchronous
## context (which should be orchestrated by an event loop).
## They block in the caller until the callee returns
self.expression(node.expression)
self.emitByte(OpCode.Await)
proc deferStmt(self: Compiler, node: DeferStmt) =
## Compiles defer statements. A defer statement
## is executed right before its containing function
## exits (either because of a return or an exception)
let current = self.chunk.code.len
self.expression(node.expression)
for i in countup(current, self.chunk.code.high()):
self.deferred.add(self.chunk.code[i])
self.chunk.code.del(i)
proc returnStmt(self: Compiler, node: ReturnStmt) =
## Compiles return statements. An empty return
## implicitly returns nil
let returnType = self.inferExprType(node.value)
let typ = self.inferDeclType(self.currentFunction)
if returnType == nil and self.currentFunction.returnType != nil:
self.error(&"expected return value of type '{self.currentFunction.returnType.token.lexeme}', but expression has no type")
elif self.currentFunction.returnType == nil:
if node.value.kind != nilExpr:
self.error("non-nil return value is not allowed in functions without an explicit return type")
else:
if returnType != typ:
self.error(&"expected return value of type '{self.typeToStr(typ)}', got '{self.typeToStr(returnType)}' instead")
self.expression(node.value)
self.emitByte(OpCode.Return)
proc yieldStmt(self: Compiler, node: YieldStmt) =
## Compiles yield statements
self.expression(node.expression)
self.emitByte(OpCode.Yield)
proc raiseStmt(self: Compiler, node: RaiseStmt) =
## Compiles yield statements
self.expression(node.exception)
self.emitByte(OpCode.Raise)
proc continueStmt(self: Compiler, node: ContinueStmt) =
## Compiles continue statements. A continue statements
## jumps to the next iteration in a loop
if self.currentLoop.start <= 65535:
self.emitByte(Jump)
self.emitBytes(self.currentLoop.start.toDouble())
else:
self.emitByte(LongJump)
self.emitBytes(self.currentLoop.start.toTriple())
proc breakStmt(self: Compiler, node: BreakStmt) =
## Compiles break statements. A continue statement
## jumps to the next iteration in a loop
# Emits dummy jump offset, this is
# patched later
discard self.emitJump(OpCode.Jump)
self.currentLoop.breakPos.add(self.chunk.code.high() - 4)
if self.currentLoop.depth > self.scopeDepth:
# Breaking out of a loop closes its scope
self.endScope()
proc patchBreaks(self: Compiler) =
## Patches "break" opcodes with
## actual jumps. This is needed
## because the size of code
## to skip is not known before
## the loop is fully compiled
for brk in self.currentLoop.breakPos:
self.chunk.code[brk] = JumpForwards.uint8()
self.patchJump(brk)
proc assertStmt(self: Compiler, node: AssertStmt) =
## Compiles assert statements (raise
## AssertionError if the expression is falsey)
self.expression(node.expression)
self.emitByte(OpCode.Assert)
proc statement(self: Compiler, node: ASTNode) =
## Compiles all statements
case node.kind:
of exprStmt:
var expression = ExprStmt(node).expression
self.expression(expression)
self.emitByte(Pop) # Expression statements discard their value. Their main use case is side effects in function calls
of NodeKind.ifStmt:
self.ifStmt(IfStmt(node))
of NodeKind.assertStmt:
self.assertStmt(AssertStmt(node))
of NodeKind.raiseStmt:
self.raiseStmt(RaiseStmt(node))
of NodeKind.breakStmt:
self.breakStmt(BreakStmt(node))
of NodeKind.continueStmt:
self.continueStmt(ContinueStmt(node))
of NodeKind.returnStmt:
self.returnStmt(ReturnStmt(node))
of NodeKind.importStmt:
discard
of NodeKind.whileStmt, NodeKind.forStmt:
## Our parser already desugars for loops to
## while loops!
let loop = self.currentLoop
self.currentLoop = Loop(start: self.chunk.code.len(),
depth: self.scopeDepth, breakPos: @[])
self.whileStmt(WhileStmt(node))
self.patchBreaks()
self.currentLoop = loop
of NodeKind.forEachStmt:
discard
of NodeKind.blockStmt:
self.blockStmt(BlockStmt(node))
of NodeKind.yieldStmt:
self.yieldStmt(YieldStmt(node))
of NodeKind.awaitStmt:
self.awaitStmt(AwaitStmt(node))
of NodeKind.deferStmt:
self.deferStmt(DeferStmt(node))
of NodeKind.tryStmt:
discard
else:
self.expression(node)
2022-04-12 12:18:25 +02:00
proc varDecl(self: Compiler, node: VarDecl) =
## Compiles variable declarations
let kind = node.valueType.toIntrinsic()
let typ = self.inferExprType(node.value)
if kind == nil and typ == nil:
self.error(&"cannot determine the type of '{node.name.token.lexeme}'")
elif typ != kind and kind != nil:
self.error(&"expected value of type '{self.typeToStr(kind)}', but '{node.name.token.lexeme}' is of type '{self.typeToStr(typ)}'")
2022-04-12 12:18:25 +02:00
self.expression(node.value)
self.declareName(node)
2022-04-12 12:18:25 +02:00
proc funDecl(self: Compiler, node: FunDecl) =
## Compiles function declarations
# We store the current function
var function = self.currentFunction
self.currentFunction = node
# A function's code is just compiled linearly
# and then jumped over
let jmp = self.emitJump(JumpForwards)
self.declareName(node)
# Since the deferred array is a linear
# sequence of instructions and we want
# to keep track to whose function's each
# set of deferred instruction belongs,
# we record the length of the deferred
# array before compiling the function
# and use this info later to compile
# the try/finally block with the deferred
# code
var deferStart = self.deferred.len()
self.blockStmt(BlockStmt(node.body))
# Yup, we're done. That was easy, huh?
# But after all functions are just named
# scopes, and we compile them just like that:
# we declare their name and arguments (before
# their body so recursion works) and then just
# handle them as a block statement (which takes
# care of incrementing self.scopeDepth so locals
# are resolved properly). There's a need for a bit
# of boilerplate code to make closures work, but
# that's about it
self.emitBytes(OpCode.Nil, OpCode.Return)
# Currently defer is not functional so we
# just pop the instructions
for i in countup(deferStart, self.deferred.len(), 1):
self.deferred.delete(i)
self.patchJump(jmp)
# This makes us compile nested functions correctly
self.currentFunction = function
proc declaration(self: Compiler, node: ASTNode) =
## Compiles all declarations
case node.kind:
of NodeKind.varDecl:
self.varDecl(VarDecl(node))
of NodeKind.funDecl:
self.funDecl(FunDecl(node))
else:
self.statement(node)
proc compile*(self: Compiler, ast: seq[ASTNode], file: string): Chunk =
## Compiles a sequence of AST nodes into a chunk
## object
self.chunk = newChunk()
self.ast = ast
self.file = file
self.names = @[]
self.scopeDepth = 0
self.currentFunction = nil
self.currentModule = self.file
self.current = 0
while not self.done():
self.declaration(self.step())
if self.ast.len() > 0:
# *Technically* an empty program is a valid program
self.endScope()
self.emitByte(OpCode.Return) # Exits the VM's main loop when used at the global scope
result = self.chunk
if self.ast.len() > 0 and self.scopeDepth != -1:
self.error(&"invalid state: invalid scopeDepth value (expected -1, got {self.scopeDepth}), did you forget to call endScope/beginScope?")