CPG/src/Chess/board.nim

2253 lines
90 KiB
Nim

# Copyright 2023 Mattia Giambirtone & All Contributors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import std/strutils
import std/strformat
import std/times
import std/math
type
PieceColor* = enum
## A piece color enumeration
None = 0'i8,
White,
Black
PieceKind* = enum
## A chess piece enumeration
Empty = 0'i8, # No piece
Bishop = 'b',
King = 'k'
Knight = 'n',
Pawn = 'p',
Queen = 'q',
Rook = 'r',
Piece* = object
## A chess piece
color*: PieceColor
kind*: PieceKind
MoveFlag* = enum
## An enumeration of move flags
Default = 0'u16, # No flag
EnPassant = 1, # Move is a capture with en passant
Capture = 2, # Move is a capture
DoublePush = 4, # Move is a double pawn push
# Castling metadata
CastleLong = 8,
CastleShort = 16,
# Pawn promotion metadata
PromoteToQueen = 32,
PromoteToRook = 64,
PromoteToBishop = 128,
PromoteToKnight = 256
# Useful type aliases
Location* = tuple[row, col: int8]
Attacked = seq[tuple[source, target, direction: Location]]
Pieces = tuple[king: Location, queens: seq[Location], rooks: seq[Location],
bishops: seq[Location], knights: seq[Location],
pawns: seq[Location]]
CountData = tuple[nodes: uint64, captures: uint64, castles: uint64, checks: uint64, promotions: uint64, enPassant: uint64, checkmates: uint64]
Move* = object
## A chess move
startSquare*: Location
targetSquare*: Location
flags*: uint16
Position* = ref object
## A chess position
# Did the rooks on either side/the king move?
castlingAvailable: tuple[white, black: tuple[queen, king: bool]]
# Number of half-moves that were performed
# to reach this position starting from the
# root of the tree
plyFromRoot: int16
# Number of half moves since
# last piece capture or pawn movement.
# Used for the 50-move rule
halfMoveClock: int8
# Full move counter. Increments
# every 2 ply
fullMoveCount: int16
# En passant target square (see https://en.wikipedia.org/wiki/En_passant)
enPassantSquare*: Location
# Locations of all pieces
pieces: tuple[white: Pieces, black: Pieces]
# Squares attacked by both sides
attacked: tuple[white: Attacked, black: Attacked]
# Pieces pinned by both sides
pinned: tuple[white: Attacked, black: Attacked]
# Active color
turn: PieceColor
ChessBoard* = ref object
## A chess board object
# The actual board where pieces live
# (flattened 8x8 matrix)
grid: seq[Piece]
# The current position
position: Position
# List of all previously reached positions
positions: seq[Position]
# A bunch of simple utility functions
func emptyPiece*: Piece {.inline.} = Piece(kind: Empty, color: None)
func emptyLocation*: Location {.inline.} = (-1 , -1)
func opposite*(c: PieceColor): PieceColor {.inline.} = (if c == White: Black else: White)
proc algebraicToLocation*(s: string): Location {.inline.}
proc makeMove*(self: ChessBoard, move: Move): Move {.discardable.}
func emptyMove*: Move {.inline.} = Move(startSquare: emptyLocation(), targetSquare: emptyLocation())
func `+`*(a, b: Location): Location = (a.row + b.row, a.col + b.col)
func `-`*(a: Location): Location = (-a.row, -a.col)
func `-`*(a, b: Location): Location = (a.row - b.row, a.col - b.col)
func isValid*(a: Location): bool {.inline.} = a.row in 0..7 and a.col in 0..7
proc generateMoves(self: ChessBoard, location: Location): seq[Move]
proc getAttackers*(self: ChessBoard, loc: Location, color: PieceColor): seq[Location]
proc getAttackFor*(self: ChessBoard, source, target: Location): tuple[source, target, direction: Location]
proc isAttacked*(self: ChessBoard, loc: Location, color: PieceColor = None): bool
proc isLegal(self: ChessBoard, move: Move): bool {.inline.}
proc doMove(self: ChessBoard, move: Move)
proc pretty*(self: ChessBoard): string
proc spawnPiece(self: ChessBoard, location: Location, piece: Piece)
proc updateAttackedSquares(self: ChessBoard)
proc getPinnedDirections(self: ChessBoard, loc: Location): seq[Location]
proc getAttacks*(self: ChessBoard, loc: Location): Attacked
proc getSlidingAttacks(self: ChessBoard, loc: Location): tuple[attacks: Attacked, pins: Attacked]
proc inCheck*(self: ChessBoard, color: PieceColor = None): bool
proc toFEN*(self: ChessBoard): string
proc undoLastMove*(self: ChessBoard)
proc extend[T](self: var seq[T], other: openarray[T]) {.inline.} =
for x in other:
self.add(x)
proc resetBoard*(self: ChessBoard)
# Due to our board layout, directions of movement are reversed for white and black, so
# we need these helpers to avoid going mad with integer tuples and minus signs everywhere
func topLeftDiagonal(color: PieceColor): Location {.inline.} = (if color == White: (-1, -1) else: (1, 1))
func topRightDiagonal(color: PieceColor): Location {.inline.} = (if color == White: (-1, 1) else: (1, -1))
func bottomLeftDiagonal(color: PieceColor): Location {.inline.} = (if color == White: (1, -1) else: (-1, 1))
func bottomRightDiagonal(color: PieceColor): Location {.inline.} = (if color == White: (1, 1) else: (-1, -1))
func leftSide(color: PieceColor): Location {.inline.} = (if color == White: (0, -1) else: (0, 1))
func rightSide(color: PieceColor): Location {.inline.} = (if color == White: (0, 1) else: (0, -1))
func topSide(color: PieceColor): Location {.inline.} = (if color == White: (-1, 0) else: (1, 0))
func bottomSide(color: PieceColor): Location {.inline.} = (if color == White: (1, 0) else: (-1, 0))
func doublePush(color: PieceColor): Location {.inline.} = (if color == White: (-2, 0) else: (2, 0))
func longCastleKing: Location {.inline.} = (0, -2)
func shortCastleKing: Location {.inline.} = (0, 2)
func longCastleRook: Location {.inline.} = (0, 3)
func shortCastleRook: Location {.inline.} = (0, -2)
func bottomLeftKnightMove(color: PieceColor, long: bool = true): Location {.inline.} =
if color == White:
if long:
return (2, -1)
else:
return (1, -2)
elif color == Black:
if long:
return (-2, 1)
else:
return (1, -2)
func bottomRightKnightMove(color: PieceColor, long: bool = true): Location {.inline.} =
if color == White:
if long:
return (2, 1)
else:
return (1, 2)
elif color == Black:
if long:
return (-2, -1)
else:
return (-1, -2)
func topLeftKnightMove(color: PieceColor, long: bool = true): Location {.inline.} =
if color == White:
if long:
return (-2, -1)
else:
return (-1, -2)
elif color == Black:
if long:
return (2, 1)
else:
return (1, 2)
func topRightKnightMove(color: PieceColor, long: bool = true): Location {.inline.} =
if color == White:
if long:
return (-2, 1)
else:
return (-1, 2)
elif color == Black:
if long:
return (2, -1)
else:
return (-1, 2)
# These return absolute locations rather than relative direction offsets
func kingSideRook(color: PieceColor): Location {.inline.} = (if color == White: (7, 7) else: (0, 7))
func queenSideRook(color: PieceColor): Location {.inline.} = (if color == White: (7, 0) else: (0, 0))
# A bunch of getters
func getActiveColor*(self: ChessBoard): PieceColor {.inline.} =
## Returns the currently active color
## (turn of who has to move)
return self.position.turn
func getEnPassantTarget*(self: ChessBoard): Location {.inline.} =
## Returns the current en passant target square
return self.position.enPassantSquare
func getMoveCount*(self: ChessBoard): int {.inline.} =
## Returns the number of full moves that
## have been played
return self.position.fullMoveCount
func getHalfMoveCount*(self: ChessBoard): int {.inline.} =
## Returns the current number of half-moves
## since the last irreversible move
return self.position.halfMoveClock
func getStartRow(piece: Piece): int {.inline.} =
## Retrieves the starting row of
## the given piece inside our 8x8
## grid
case piece.color:
of None:
return -1
of White:
case piece.kind:
of Pawn:
return 6
else:
return 7
of Black:
case piece.kind:
of Pawn:
return 1
else:
return 0
func getKingStartingPosition(color: PieceColor): Location {.inline.} =
## Retrieves the starting location of the king
## for the given color
case color:
of White:
return (7, 4)
of Black:
return (0, 4)
else:
discard
func getLastRow(color: PieceColor): int {.inline.} =
## Retrieves the location of the last
## row relative to the given color
case color:
of White:
return 0
of Black:
return 7
else:
return -1
proc newChessboard: ChessBoard =
## Returns a new, empty chessboard
new(result)
# Turns our flat sequence into an 8x8 grid
result.grid = newSeqOfCap[Piece](64)
for _ in 0..63:
result.grid.add(emptyPiece())
result.position = Position(attacked: (@[], @[]),
enPassantSquare: emptyLocation(),
turn: White,
fullMoveCount: 1,
pieces: (white: (king: emptyLocation(),
queens: @[],
rooks: @[],
bishops: @[],
knights: @[],
pawns: @[]),
black: (king: emptyLocation(),
queens: @[],
rooks: @[],
bishops: @[],
knights: @[],
pawns: @[])))
func coordToIndex(row, col: int): int {.inline.} = (row * 8) + col
func `[]`(self: seq[Piece], row, column: Natural): Piece {.inline.} = self[coordToIndex(row, column)]
proc `[]=`(self: var seq[Piece], row, column: Natural, piece: Piece) {.inline.} = self[coordToIndex(row, column)] = piece
proc newChessboardFromFEN*(fen: string): ChessBoard =
## Initializes a chessboard with the
## position encoded by the given FEN string
result = newChessboard()
var
# Current location in the grid
row: int8 = 0
column: int8 = 0
# Current section in the FEN string
section = 0
# Current index into the FEN string
index = 0
# Temporary variable to store a piece
piece: Piece
# See https://en.wikipedia.org/wiki/Forsyth%E2%80%93Edwards_Notation
while index <= fen.high():
var c = fen[index]
if c == ' ':
# Next section
inc(section)
inc(index)
continue
case section:
of 0:
# Piece placement data
case c.toLowerAscii():
# Piece
of 'r', 'n', 'b', 'q', 'k', 'p':
# We know for a fact these values are in our
# enumeration, so all is good
{.warning[HoleEnumConv]:off.}
piece = Piece(kind: PieceKind(c.toLowerAscii()), color: if c.isUpperAscii(): White else: Black)
case piece.color:
of Black:
case piece.kind:
of Pawn:
result.position.pieces.black.pawns.add((row, column))
of Bishop:
result.position.pieces.black.bishops.add((row, column))
of Knight:
result.position.pieces.black.knights.add((row, column))
of Rook:
result.position.pieces.black.rooks.add((row, column))
of Queen:
result.position.pieces.black.queens.add((row, column))
of King:
if result.position.pieces.black.king != emptyLocation():
raise newException(ValueError, "invalid position: exactly one king of each color must be present")
result.position.pieces.black.king = (row, column)
else:
discard
of White:
case piece.kind:
of Pawn:
result.position.pieces.white.pawns.add((row, column))
of Bishop:
result.position.pieces.white.bishops.add((row, column))
of Knight:
result.position.pieces.white.knights.add((row, column))
of Rook:
result.position.pieces.white.rooks.add((row, column))
of Queen:
result.position.pieces.white.queens.add((row, column))
of King:
if result.position.pieces.white.king != emptyLocation():
raise newException(ValueError, "invalid position: exactly one king of each color must be present")
result.position.pieces.white.king = (row, column)
else:
discard
else:
discard
result.grid[row, column] = piece
inc(column)
of '/':
# Next row
inc(row)
column = 0
of '0'..'9':
# Skip x columns
let x = int(uint8(c) - uint8('0'))
if x > 8:
raise newException(ValueError, &"invalid FEN: invalid column skip size ({x} > 8)")
column += int8(x)
else:
raise newException(ValueError, &"invalid FEN: unknown piece identifier '{c}'")
of 1:
# Active color
case c:
of 'w':
result.position.turn = White
of 'b':
result.position.turn = Black
else:
raise newException(ValueError, &"invalid FEN: invalid active color identifier '{c}'")
of 2:
# Castling availability
case c:
of '-':
# Neither side can castle anywhere: do nothing,
# as the castling metadata is set to this state
# by default
discard
of 'K':
result.position.castlingAvailable.white.king = true
of 'Q':
result.position.castlingAvailable.white.queen = true
of 'k':
result.position.castlingAvailable.black.king = true
of 'q':
result.position.castlingAvailable.black.queen = true
else:
raise newException(ValueError, &"invalid FEN: unknown symbol '{c}' found in castling availability section")
of 3:
# En passant target square
case c:
of '-':
# Field is already uninitialized to the correct state
discard
else:
result.position.enPassantSquare = fen[index..index+1].algebraicToLocation()
# Square metadata is 2 bytes long
inc(index)
of 4:
# Halfmove clock
var s = ""
while not fen[index].isSpaceAscii():
s.add(fen[index])
inc(index)
# Backtrack so the space is seen by the
# next iteration of the loop
dec(index)
result.position.halfMoveClock = parseInt(s).int8
of 5:
# Fullmove number
var s = ""
while index <= fen.high():
s.add(fen[index])
inc(index)
result.position.fullMoveCount = parseInt(s).int8
else:
raise newException(ValueError, "invalid FEN: too many fields in FEN string")
inc(index)
result.updateAttackedSquares()
if result.inCheck(result.getActiveColor().opposite):
# Opponent king cannot be captured on the next move
raise newException(ValueError, "invalid position: opponent king can be captured")
if result.position.pieces.white.king == emptyLocation() or result.position.pieces.black.king == emptyLocation():
# Both kings must be on the board
raise newException(ValueError, "invalid position: exactly one king of each color must be present")
proc newDefaultChessboard*: ChessBoard {.inline.} =
## Initializes a chessboard with the
## starting position
return newChessboardFromFEN("rnbqkbnr/pppppppp/8/8/8/8/PPPPPPPP/RNBQKBNR w KQkq - 0 1")
proc countPieces*(self: ChessBoard, kind: PieceKind, color: PieceColor): int =
## Returns the number of pieces with
## the given color and type in the
## current position
case color:
of White:
case kind:
of Pawn:
return self.position.pieces.white.pawns.len()
of Bishop:
return self.position.pieces.white.bishops.len()
of Knight:
return self.position.pieces.white.knights.len()
of Rook:
return self.position.pieces.white.rooks.len()
of Queen:
return self.position.pieces.white.queens.len()
of King:
# There shall be only one, forever
return 1
else:
raise newException(ValueError, "invalid piece type")
of Black:
case kind:
of Pawn:
return self.position.pieces.black.pawns.len()
of Bishop:
return self.position.pieces.black.bishops.len()
of Knight:
return self.position.pieces.black.knights.len()
of Rook:
return self.position.pieces.black.rooks.len()
of Queen:
return self.position.pieces.black.queens.len()
of King:
# In perpetuity
return 1
else:
raise newException(ValueError, "invalid piece type")
of None:
raise newException(ValueError, "invalid piece color")
func countPieces*(self: ChessBoard, piece: Piece): int {.inline.} =
## Returns the number of pieces on the board that
## are of the same type and color as the given piece
return self.countPieces(piece.kind, piece.color)
func rankToColumn(rank: int): int8 {.inline.} =
## Converts a chess rank (1-indexed)
## into a 0-indexed column value for our
## board. This converter is necessary because
## chess positions are indexed differently with
## respect to our internal representation
const indeces: array[8, int8] = [7, 6, 5, 4, 3, 2, 1, 0]
return indeces[rank - 1]
func rowToFile(row: int): int {.inline.} =
## Converts a row into our grid into
## a chess file
const indeces = [8, 7, 6, 5, 4, 3, 2, 1]
return indeces[row]
proc algebraicToLocation*(s: string): Location =
## Converts a square location from algebraic
## notation to its corresponding row and column
## in the chess grid (0 indexed)
if len(s) != 2:
raise newException(ValueError, "algebraic position must be of length 2")
var s = s.toLowerAscii()
if s[0] notin 'a'..'h':
raise newException(ValueError, &"algebraic position has invalid first character ('{s[0]}')")
if s[1] notin '1'..'8':
raise newException(ValueError, &"algebraic position has invalid second character ('{s[1]}')")
let rank = int8(uint8(s[0]) - uint8('a'))
# Convert the file character to a number
let file = rankToColumn(int8(uint8(s[1]) - uint8('0')))
return (file, rank)
func locationToAlgebraic*(loc: Location): string {.inline.} =
## Converts a location from our internal row, column
## notation to a square in algebraic notation
return &"{char(uint8(loc.col) + uint8('a'))}{rowToFile(loc.row)}"
func getPiece*(self: ChessBoard, loc: Location): Piece {.inline.} =
## Gets the piece at the given location
return self.grid[loc.row, loc.col]
func getPiece*(self: ChessBoard, square: string): Piece {.inline.} =
## Gets the piece on the given square
## in algebraic notation
return self.getPiece(square.algebraicToLocation())
func isPromotion*(move: Move): bool {.inline.} =
## Returns whether the given move is a
## pawn promotion
for promotion in [PromoteToBishop, PromoteToKnight, PromoteToRook, PromoteToQueen]:
if (move.flags and promotion.uint16) != 0:
return true
func getPromotionType*(move: Move): MoveFlag {.inline.} =
## Returns the promotion type of the given move.
## The return value of this function is only valid
## if isPromotion() returns true
for promotion in [PromoteToBishop, PromoteToKnight, PromoteToRook, PromoteToQueen]:
if (move.flags and promotion.uint16) != 0:
return promotion
func isCapture*(move: Move): bool {.inline.} =
## Returns whether the given move is a
## cature
result = (move.flags and Capture.uint16) == Capture.uint16
func isCastling*(move: Move): bool {.inline.} =
## Returns whether the given move is a
## castle
for flag in [CastleLong, CastleShort]:
if (move.flags and flag.uint16) != 0:
return true
func getCastlingType*(move: Move): MoveFlag {.inline.} =
## Returns the castling type of the given move.
## The return value of this function is only valid
## if isCastling() returns true
for flag in [CastleLong, CastleShort]:
if (move.flags and flag.uint16) != 0:
return flag
func isEnPassant*(move: Move): bool {.inline.} =
## Returns whether the given move is an
## en passant capture
result = (move.flags and EnPassant.uint16) != 0
func isDoublePush*(move: Move): bool {.inline.} =
## Returns whether the given move is a
## double pawn push
result = (move.flags and DoublePush.uint16) != 0
func getFlags*(move: Move): seq[MoveFlag] =
## Gets all the flags of this move
for flag in [EnPassant, Capture, DoublePush, CastleLong, CastleShort,
PromoteToBishop, PromoteToKnight, PromoteToQueen,
PromoteToRook]:
if (move.flags and flag.uint16) == flag.uint16:
result.add(flag)
if result.len() == 0:
result.add(Default)
func getKing(self: ChessBoard, color: PieceColor): Location {.inline.} =
var color = color
if color == None:
color = self.getActiveColor()
case color:
of White:
return self.position.pieces.white.king
of Black:
return self.position.pieces.black.king
else:
discard
proc inCheck*(self: ChessBoard, color: PieceColor = None): bool =
## Returns whether the given color's
## king is in check. If the color is
## set to None, checks are checked
## for the active color's king
var color = color
if color == None:
color = self.getActiveColor()
case color:
of White:
result = self.isAttacked(self.position.pieces.white.king, Black)
of Black:
result = self.isAttacked(self.position.pieces.black.king, White)
else:
# Unreachable
discard
proc canCastle*(self: ChessBoard, color: PieceColor = None): tuple[queen, king: bool] {.inline.} =
## Returns the sides on which castling is allowed
## for the given color. If the color is None, the
## currently active color is used
var color = color
if color == None:
color = self.getActiveColor()
# Check if castling rights are still available for moving side
case color:
of White:
result.king = self.position.castlingAvailable.white.king
result.queen = self.position.castlingAvailable.white.queen
of Black:
result.king = self.position.castlingAvailable.black.king
result.queen = self.position.castlingAvailable.black.queen
of None:
# Unreachable
discard
# Some of these checks may seem redundant, but we
# perform them because they're less expensive
# King is not on its starting square
if self.getKing(color) != getKingStartingPosition(color):
return (false, false)
if self.inCheck(color):
# King can not castle out of check
return (false, false)
if result.king or result.queen:
var
loc: Location
queenSide: Location
kingSide: Location
# If the path between the king and rook on a given side is blocked, or any of the
# squares where the king would move to are attacked by the opponent, then castling
# is temporarily prohibited on that side
case color:
of White:
loc = self.position.pieces.white.king
queenSide = color.leftSide()
kingSide = color.rightSide()
of Black:
loc = self.position.pieces.black.king
queenSide = color.rightSide()
kingSide = color.leftSide()
of None:
# Unreachable
discard
if result.king:
# Short castle
var
location = loc
otherPiece: Piece
while true:
location = location + kingSide
if location == color.kingSideRook():
break
otherPiece = self.grid[location.row, location.col]
if otherPiece.color != None:
result.king = false
break
if self.isAttacked(location, color.opposite()):
result.king = false
break
if result.queen:
# Long castle
var
location = loc
otherPiece: Piece
while true:
location = location + queenSide
if location == color.queenSideRook():
break
otherPiece = self.grid[location.row, location.col]
if otherPiece.color != None:
result.queen = false
break
if self.isAttacked(location, color.opposite()):
result.queen = false
break
proc getCheckResolutions(self: ChessBoard, color: PieceColor): seq[Location] =
## Returns the squares that need to be covered to
## resolve the current check (including capturing
## the checking piece). In case of double check, an
## empty list is returned (as the king must move)
var king: Location
case color:
of White:
king = self.position.pieces.white.king
of Black:
king = self.position.pieces.black.king
else:
return
let attackers: seq[Location] = self.getAttackers(king, color.opposite())
if attackers.len() > 1:
# Double checks require to move the king
return @[]
let
attacker = attackers[0]
attackerPiece = self.grid[attacker.row, attacker.col]
attack = self.getAttackFor(attacker, king)
# Capturing the piece resolves the check
result.add(attacker)
# Blocking the attack is also a viable strategy
# (unless the check is from a knight or a pawn,
# in which case either the king has to move or
# that piece has to be captured, but this is
# already implicitly handled by the loop below)
var location = attacker
while location != king:
location = location + attack.direction
if not location.isValid():
break
result.add(location)
proc generatePawnMoves(self: ChessBoard, location: Location): seq[Move] =
## Generates the possible moves for the pawn in the given
## location
var
piece = self.grid[location.row, location.col]
targets: seq[Location] = @[]
doAssert piece.kind == Pawn, &"generatePawnMoves called on a {piece.kind}"
# Pawns can move forward one square
let forward = piece.color.topSide() + location
# Only if the square is empty though
if forward.isValid() and self.grid[forward.row, forward.col].color == None:
targets.add(forward)
# If the pawn is on its first rank, it can push two squares
if location.row == piece.getStartRow():
let double = location + piece.color.doublePush()
# Check that both squares are empty
if double.isValid() and self.grid[forward.row, forward.col].color == None and self.grid[double.row, double.col].color == None:
targets.add(double)
let enPassantPawn = self.getEnPassantTarget() + piece.color.opposite().topSide()
# They can also move one square on either of their
# forward diagonals, but only for captures and en passant
for diagonal in [location + piece.color.topRightDiagonal(), location + piece.color.topLeftDiagonal()]:
if diagonal.isValid():
let otherPiece = self.grid[diagonal.row, diagonal.col]
if diagonal == self.position.enPassantSquare and self.grid[enPassantPawn.row, enPassantPawn.col].color == piece.color.opposite():
# Ensure en passant doesn't create a check
let king = self.getKing(piece.color)
var ok = true
if king.row == location.row:
var current = location + piece.color.rightSide()
while true:
current = current + piece.color.rightSide()
if not current.isValid():
break
let p = self.grid[current.row, current.col]
if p.color == piece.color:
break
if p.color == None:
continue
# Bishops can't create checks through en passant
if p.color == piece.color.opposite() and p.kind in [Queen, Rook]:
ok = false
if ok:
targets.add(diagonal)
elif otherPiece.color == piece.color.opposite() and otherPiece.kind != King:
targets.add(diagonal)
# Check for pins
let pinned = self.getPinnedDirections(location)
if pinned.len() > 0:
var newTargets: seq[Location] = @[]
for target in targets:
if target in pinned:
newTargets.add(target)
targets = newTargets
let checked = self.inCheck()
let resolutions = if not checked: @[] else: self.getCheckResolutions(piece.color)
var targetPiece: Piece
for target in targets:
if checked and target notin resolutions:
continue
targetPiece = self.grid[target.row, target.col]
var flags: uint16 = Default.uint16
if targetPiece.color != None:
flags = flags or Capture.uint16
elif abs(location.row - target.row) == 2:
flags = flags or DoublePush.uint16
elif target == self.getEnPassantTarget():
flags = flags or EnPassant.uint16
if target.row == piece.color.getLastRow():
# Pawn reached the other side of the board: generate all potential piece promotions
for promotionType in [PromoteToKnight, PromoteToBishop, PromoteToRook, PromoteToQueen]:
result.add(Move(startSquare: location, targetSquare: target, flags: promotionType.uint16 or flags))
continue
result.add(Move(startSquare: location, targetSquare: target, flags: flags))
proc generateSlidingMoves(self: ChessBoard, location: Location): seq[Move] =
## Generates moves for the sliding piece in the given location
let piece = self.grid[location.row, location.col]
doAssert piece.kind in [Bishop, Rook, Queen], &"generateSlidingMoves called on a {piece.kind}"
var directions: seq[Location] = @[]
# Only check in the right directions for the chosen piece
if piece.kind in [Bishop, Queen]:
directions.add(piece.color.topLeftDiagonal())
directions.add(piece.color.topRightDiagonal())
directions.add(piece.color.bottomLeftDiagonal())
directions.add(piece.color.bottomRightDiagonal())
if piece.kind in [Queen, Rook]:
directions.add(piece.color.topSide())
directions.add(piece.color.bottomSide())
directions.add(piece.color.rightSide())
directions.add(piece.color.leftSide())
let pinned = self.getPinnedDirections(location)
if pinned.len() > 0:
var newDirections: seq[Location] = @[]
for direction in directions:
if direction in pinned:
newDirections.add(direction)
directions = newDirections
let checked = self.inCheck()
let resolutions = if not checked: @[] else: self.getCheckResolutions(piece.color)
for direction in directions:
# Slide in this direction as long as it's possible
var
square: Location = location
otherPiece: Piece
while true:
square = square + direction
# End of board reached
if not square.isValid():
break
otherPiece = self.grid[square.row, square.col]
# A friendly piece is in the way
if otherPiece.color == piece.color:
break
if checked and square notin resolutions:
# We don't break out of the loop because
# we might resolve the check later
continue
if otherPiece.color == piece.color.opposite:
# Target square contains an enemy piece: capture
# it and stop going any further
if otherPiece.kind != King:
# Can't capture the king
result.add(Move(startSquare: location, targetSquare: square, flags: Capture.uint16))
break
# Target square is empty
result.add(Move(startSquare: location, targetSquare: square))
proc generateKingMoves(self: ChessBoard, location: Location): seq[Move] =
## Generates moves for the king in the given location
var
piece = self.grid[location.row, location.col]
doAssert piece.kind == King, &"generateKingMoves called on a {piece.kind}"
var directions: seq[Location] = @[piece.color.topLeftDiagonal(),
piece.color.topRightDiagonal(),
piece.color.bottomRightDiagonal(),
piece.color.bottomLeftDiagonal(),
piece.color.topSide(),
piece.color.bottomSide(),
piece.color.leftSide(),
piece.color.rightSide()]
# Castling
let canCastle = self.canCastle(piece.color)
if canCastle.queen:
directions.add(longCastleKing())
if canCastle.king:
directions.add(shortCastleKing())
var flag = Default
for direction in directions:
# Step in this direction once
let square: Location = location + direction
# End of board reached
if not square.isValid():
continue
if self.isAttacked(square, piece.color.opposite()):
continue
if direction == longCastleKing():
flag = CastleLong
elif direction == shortCastleKing():
flag = CastleShort
else:
flag = Default
let otherPiece = self.grid[square.row, square.col]
if otherPiece.color == piece.color.opposite():
flag = Capture
# A friendly piece is in the way, move onto the next direction
if otherPiece.color == piece.color:
continue
# Target square is empty or contains an enemy piece:
# All good for us!
result.add(Move(startSquare: location, targetSquare: square, flags: flag.uint16))
proc generateKnightMoves(self: ChessBoard, location: Location): seq[Move] =
## Generates moves for the knight in the given location
var
piece = self.grid[location.row, location.col]
doAssert piece.kind == Knight, &"generateKnightMoves called on a {piece.kind}"
var directions: seq[Location] = @[piece.color.bottomLeftKnightMove(),
piece.color.bottomRightKnightMove(),
piece.color.topLeftKnightMove(),
piece.color.topRightKnightMove(),
piece.color.bottomLeftKnightMove(long=false),
piece.color.bottomRightKnightMove(long=false),
piece.color.topLeftKnightMove(long=false),
piece.color.topRightKnightMove(long=false)]
let pinned = self.getPinnedDirections(location)
if pinned.len() > 0:
# Knight is pinned: can't move!
return @[]
let checked = self.inCheck()
let resolutions = if not checked: @[] else: self.getCheckResolutions(piece.color)
for direction in directions:
# Jump to this square
let square: Location = location + direction
# End of board reached
if not square.isValid():
continue
let otherPiece = self.grid[square.row, square.col]
# A friendly piece or the opponent king is is in the way
if otherPiece.color == piece.color or otherPiece.kind == King:
continue
if checked and square notin resolutions:
continue
if otherPiece.color != None:
# Target square contains an enemy piece: capture
# it
result.add(Move(startSquare: location, targetSquare: square, flags: Capture.uint16))
else:
# Target square is empty
result.add(Move(startSquare: location, targetSquare: square))
proc generateMoves(self: ChessBoard, location: Location): seq[Move] =
## Returns the list of possible legal chess moves for the
## piece in the given location
let piece = self.grid[location.row, location.col]
case piece.kind:
of Queen, Bishop, Rook:
return self.generateSlidingMoves(location)
of Pawn:
return self.generatePawnMoves(location)
of King:
return self.generateKingMoves(location)
of Knight:
return self.generateKnightMoves(location)
else:
return @[]
proc generateAllMoves*(self: ChessBoard): seq[Move] =
## Returns the list of all possible legal moves
## in the current position
for i in 0..7:
for j in 0..7:
if self.grid[i, j].color == self.getActiveColor():
for move in self.generateMoves((int8(i), int8(j))):
result.add(move)
proc isAttacked*(self: ChessBoard, loc: Location, color: PieceColor = None): bool =
## Returns whether the given location is attacked
## by the given color
var color = color
if color == None:
color = self.getActiveColor().opposite()
case color:
of Black:
for attack in self.position.attacked.black:
if attack.target == loc:
return true
of White:
for attack in self.position.attacked.white:
if attack.target == loc:
return true
of None:
discard
proc getAttackers*(self: ChessBoard, loc: Location, color: PieceColor): seq[Location] =
## Returns all the attackers of the given color
## for the given square
case color:
of Black:
for attack in self.position.attacked.black:
if attack.target == loc:
result.add(attack.source)
of White:
for attack in self.position.attacked.white:
if attack.target == loc:
result.add(attack.source)
of None:
discard
proc getAttacks*(self: ChessBoard, loc: Location): Attacked =
## Returns all the squares attacked by the piece in the given
## location
let piece = self.grid[loc.row, loc.col]
case piece.color:
of Black:
for attack in self.position.attacked.black:
if attack.source == loc:
result.add(attack)
of White:
for attack in self.position.attacked.white:
if attack.source == loc:
result.add(attack)
of None:
discard
proc getAttackFor*(self: ChessBoard, source, target: Location): tuple[source, target, direction: Location] =
## Returns the first attack of the piece in the given
## source location that also attacks the target location
let piece = self.grid[source.row, source.col]
case piece.color:
of Black:
for attack in self.position.attacked.black:
if attack.target == target and attack.source == source:
return attack
of White:
for attack in self.position.attacked.white:
if attack.target == target and attack.source == source:
return attack
of None:
discard
proc isAttacked*(self: ChessBoard, square: string): bool =
## Returns whether the given square is attacked
## by the current
return self.isAttacked(square.algebraicToLocation())
func addAttack(self: ChessBoard, attack: tuple[source, target, direction: Location], color: PieceColor) {.inline.} =
if attack.source.isValid() and attack.target.isValid():
case color:
of White:
self.position.attacked.white.add(attack)
of Black:
self.position.attacked.black.add(attack)
else:
discard
proc getPinnedDirections(self: ChessBoard, loc: Location): seq[Location] =
let piece = self.grid[loc.row, loc.col]
case piece.color:
of None:
discard
of White:
for pin in self.position.pinned.black:
if pin.target == loc:
result.add(pin.direction)
of Black:
for pin in self.position.pinned.white:
if pin.target == loc:
result.add(pin.direction)
proc updatePawnAttacks(self: ChessBoard) =
## Internal helper of updateAttackedSquares
for loc in self.position.pieces.white.pawns:
# Pawns are special in how they capture (i.e. the
# squares they can move to do not match the squares
# they can capture on. Sneaky fucks)
self.addAttack((loc, loc + White.topRightDiagonal(), White.topRightDiagonal()), White)
self.addAttack((loc, loc + White.topLeftDiagonal(), White.topRightDiagonal()), White)
# We do the same thing for black
for loc in self.position.pieces.black.pawns:
self.addAttack((loc, loc + Black.topRightDiagonal(), Black.topRightDiagonal()), Black)
self.addAttack((loc, loc + Black.topLeftDiagonal(), Black.topRightDiagonal()), Black)
proc updateKingAttacks(self: ChessBoard) =
## Internal helper of updateAttackedSquares
var king = self.position.pieces.white.king
self.addAttack((king, king + White.topRightDiagonal(), White.topRightDiagonal()), White)
self.addAttack((king, king + White.topLeftDiagonal(), White.topLeftDiagonal()), White)
self.addAttack((king, king + White.bottomLeftDiagonal(), White.bottomLeftDiagonal()), White)
self.addAttack((king, king + White.bottomRightDiagonal(), White.bottomRightDiagonal()), White)
king = self.position.pieces.black.king
self.addAttack((king, king + Black.topRightDiagonal(), Black.topRightDiagonal()), Black)
self.addAttack((king, king + Black.topLeftDiagonal(), Black.topLeftDiagonal()), Black)
self.addAttack((king, king + Black.bottomLeftDiagonal(), Black.bottomLeftDiagonal()), Black)
self.addAttack((king, king + Black.bottomRightDiagonal(), Black.bottomRightDiagonal()), Black)
proc updateKnightAttacks(self: ChessBoard) =
## Internal helper of updateAttackedSquares
for loc in self.position.pieces.white.knights:
self.addAttack((loc, loc + White.topLeftKnightMove(), White.topLeftKnightMove()), White)
self.addAttack((loc, loc + White.topRightKnightMove(), White.topRightKnightMove()), White)
self.addAttack((loc, loc + White.bottomLeftKnightMove(), White.bottomLeftKnightMove()), White)
self.addAttack((loc, loc + White.bottomRightKnightMove(), White.bottomRightKnightMove()), White)
self.addAttack((loc, loc + White.topLeftKnightMove(long=false), White.topLeftKnightMove(long=false)), White)
self.addAttack((loc, loc + White.topRightKnightMove(long=false), White.topRightKnightMove(long=false)), White)
self.addAttack((loc, loc + White.bottomLeftKnightMove(long=false), White.bottomLeftKnightMove(long=false)), White)
self.addAttack((loc, loc + White.bottomRightKnightMove(long=false), White.bottomRightKnightMove(long=false)), White)
for loc in self.position.pieces.black.knights:
self.addAttack((loc, loc + Black.topLeftKnightMove(), Black.topLeftKnightMove()), Black)
self.addAttack((loc, loc + Black.topRightKnightMove(), Black.topRightKnightMove()), Black)
self.addAttack((loc, loc + Black.bottomLeftKnightMove(), Black.bottomLeftKnightMove()), Black)
self.addAttack((loc, loc + Black.bottomRightKnightMove(), Black.bottomRightKnightMove()), Black)
self.addAttack((loc, loc + Black.topLeftKnightMove(long=false), Black.topLeftKnightMove(long=false)), Black)
self.addAttack((loc, loc + Black.topRightKnightMove(long=false), Black.topRightKnightMove(long=false)), Black)
self.addAttack((loc, loc + Black.bottomLeftKnightMove(long=false), Black.bottomLeftKnightMove(long=false)), Black)
self.addAttack((loc, loc + Black.bottomRightKnightMove(long=false), Black.bottomRightKnightMove(long=false)), Black)
proc getSlidingAttacks(self: ChessBoard, loc: Location): tuple[attacks: Attacked, pins: Attacked] =
## Internal helper of updateSlidingAttacks
var
directions: seq[Location] = @[]
let piece = self.grid[loc.row, loc.col]
if piece.kind in [Bishop, Queen]:
directions.add(piece.color.topLeftDiagonal())
directions.add(piece.color.topRightDiagonal())
directions.add(piece.color.bottomLeftDiagonal())
directions.add(piece.color.bottomRightDiagonal())
if piece.kind in [Queen, Rook]:
directions.add(piece.color.topSide())
directions.add(piece.color.bottomSide())
directions.add(piece.color.rightSide())
directions.add(piece.color.leftSide())
for direction in directions:
var
square = loc
otherPiece: Piece
# Slide in this direction as long as it's possible
while true:
square = square + direction
# End of board reached
if not square.isValid():
break
otherPiece = self.grid[square.row, square.col]
# Target square is attacked (even if a friendly piece
# is present, because in this case we're defending
# it)
result.attacks.add((loc, square, direction))
# Empty square, keep going
if otherPiece.color == None:
continue
if otherPiece.color == piece.color.opposite():
if otherPiece.kind != King:
# We found an enemy piece that is not
# the enemy king. We don't break out
# immediately because we first want
# to check if we've pinned a piece
var
otherSquare: Location = square
behindPiece: Piece
while true:
otherSquare = otherSquare + direction
if not otherSquare.isValid():
break
behindPiece = self.grid[otherSquare.row, otherSquare.col]
if behindPiece.color == None:
continue
if behindPiece.color == piece.color.opposite and behindPiece.kind == King:
# The enemy king is behind this enemy piece: pin it along
# this axis in both directions
result.pins.add((loc, square, direction))
result.pins.add((loc, square, -direction))
else:
break
else:
# Enemy king is here: ensure it cannot move backwards by
# attacking the square behind it (if one exists and is
# valid)
let target = square + direction
if target.isValid():
result.attacks.add((loc, target, direction))
break
proc updateSlidingAttacks(self: ChessBoard) =
## Internal helper of updateAttackedSquares
var data: tuple[attacks: Attacked, pins: Attacked]
for loc in self.position.pieces.white.bishops:
data = self.getSlidingAttacks(loc)
self.position.attacked.white.extend(data.attacks)
self.position.pinned.white.extend(data.pins)
for loc in self.position.pieces.white.rooks:
data = self.getSlidingAttacks(loc)
self.position.attacked.white.extend(data.attacks)
self.position.pinned.white.extend(data.pins)
for loc in self.position.pieces.white.queens:
data = self.getSlidingAttacks(loc)
self.position.attacked.white.extend(data.attacks)
self.position.pinned.white.extend(data.pins)
for loc in self.position.pieces.black.bishops:
data = self.getSlidingAttacks(loc)
self.position.attacked.black.extend(data.attacks)
self.position.pinned.black.extend(data.pins)
for loc in self.position.pieces.black.rooks:
data = self.getSlidingAttacks(loc)
self.position.attacked.black.extend(data.attacks)
self.position.pinned.black.extend(data.pins)
for loc in self.position.pieces.black.queens:
data = self.getSlidingAttacks(loc)
self.position.attacked.black.extend(data.attacks)
self.position.pinned.black.extend(data.pins)
proc updateAttackedSquares(self: ChessBoard) =
## Updates internal metadata about which squares
## are attacked
self.position.attacked.white.setLen(0)
self.position.attacked.black.setLen(0)
# Pawns
self.updatePawnAttacks()
# Sliding pieces
self.updateSlidingAttacks()
# Knights
self.updateKnightAttacks()
# Kings
self.updateKingAttacks()
proc removePiece(self: ChessBoard, location: Location, attack: bool = true, empty: bool = true) =
## Removes a piece from the board, updating necessary
## metadata
var piece = self.grid[location.row, location.col]
if empty:
self.grid[location.row, location.col] = emptyPiece()
case piece.color:
of White:
case piece.kind:
of Pawn:
self.position.pieces.white.pawns.delete(self.position.pieces.white.pawns.find(location))
of Bishop:
self.position.pieces.white.bishops.delete(self.position.pieces.white.bishops.find(location))
of Knight:
self.position.pieces.white.knights.delete(self.position.pieces.white.knights.find(location))
of Rook:
self.position.pieces.white.rooks.delete(self.position.pieces.white.rooks.find(location))
of Queen:
self.position.pieces.white.queens.delete(self.position.pieces.white.queens.find(location))
of King:
doAssert false, "removePiece: attempted to remove the white king"
else:
discard
of Black:
case piece.kind:
of Pawn:
self.position.pieces.black.pawns.delete(self.position.pieces.black.pawns.find(location))
of Bishop:
self.position.pieces.black.bishops.delete(self.position.pieces.black.bishops.find(location))
of Knight:
self.position.pieces.black.knights.delete(self.position.pieces.black.knights.find(location))
of Rook:
self.position.pieces.black.rooks.delete(self.position.pieces.black.rooks.find(location))
of Queen:
self.position.pieces.black.queens.delete(self.position.pieces.black.queens.find(location))
of King:
doAssert false, "removePiece: attempted to remove the black king"
else:
discard
else:
discard
if attack:
self.updateAttackedSquares()
proc movePiece(self: ChessBoard, move: Move, attack: bool = true) =
## Internal helper to move a piece. If attack
## is set to false, then this function does
## not update attacked squares metadata, just
## positional info and the grid itself
let piece = self.grid[move.startSquare.row, move.startSquare.col]
case piece.color:
of White:
case piece.kind:
of Pawn:
# The way things are structured, we don't care about the order
# of this list, so we can add and remove entries as we please
self.position.pieces.white.pawns.delete(self.position.pieces.white.pawns.find(move.startSquare))
self.position.pieces.white.pawns.add(move.targetSquare)
of Bishop:
self.position.pieces.white.bishops.delete(self.position.pieces.white.bishops.find(move.startSquare))
self.position.pieces.white.bishops.add(move.targetSquare)
of Knight:
self.position.pieces.white.knights.delete(self.position.pieces.white.knights.find(move.startSquare))
self.position.pieces.white.knights.add(move.targetSquare)
of Rook:
self.position.pieces.white.rooks.delete(self.position.pieces.white.rooks.find(move.startSquare))
self.position.pieces.white.rooks.add(move.targetSquare)
of Queen:
self.position.pieces.white.queens.delete(self.position.pieces.white.queens.find(move.startSquare))
self.position.pieces.white.queens.add(move.targetSquare)
of King:
self.position.pieces.white.king = move.targetSquare
else:
discard
of Black:
case piece.kind:
of Pawn:
self.position.pieces.black.pawns.delete(self.position.pieces.black.pawns.find(move.startSquare))
self.position.pieces.black.pawns.add(move.targetSquare)
of Bishop:
self.position.pieces.black.bishops.delete(self.position.pieces.black.bishops.find(move.startSquare))
self.position.pieces.black.bishops.add(move.targetSquare)
of Knight:
self.position.pieces.black.knights.delete(self.position.pieces.black.knights.find(move.startSquare))
self.position.pieces.black.knights.add(move.targetSquare)
of Rook:
self.position.pieces.black.rooks.delete(self.position.pieces.black.rooks.find(move.startSquare))
self.position.pieces.black.rooks.add(move.targetSquare)
of Queen:
self.position.pieces.black.queens.delete(self.position.pieces.black.queens.find(move.startSquare))
self.position.pieces.black.queens.add(move.targetSquare)
of King:
self.position.pieces.black.king = move.targetSquare
else:
discard
else:
discard
# Empty out the starting square
self.grid[move.startSquare.row, move.startSquare.col] = emptyPiece()
# Actually move the piece
self.grid[move.targetSquare.row, move.targetSquare.col] = piece
if attack:
self.updateAttackedSquares()
proc movePiece(self: ChessBoard, startSquare, targetSquare: Location, attack: bool = true) =
## Like the other movePiece(), but with two locations
self.movePiece(Move(startSquare: startSquare, targetSquare: targetSquare), attack)
proc doMove(self: ChessBoard, move: Move) =
## Internal function called by makeMove after
## performing legality checks. Can be used in
## performance-critical paths where a move is
## already known to be legal
# Record final position for future reference
self.positions.add(self.position)
# Final checks
let piece = self.grid[move.startSquare.row, move.startSquare.col]
var
halfMoveClock = self.position.halfMoveClock
fullMoveCount = self.position.fullMoveCount
castlingAvailable = self.position.castlingAvailable
enPassantTarget = self.getEnPassantTarget()
# Needed to detect draw by the 50 move rule
if piece.kind == Pawn or move.isCapture():
halfMoveClock = 0
else:
inc(halfMoveClock)
if piece.color == Black:
inc(fullMoveCount)
# En passant check
if enPassantTarget != emptyLocation():
let enPassantPawn = enPassantTarget + piece.color.topSide()
if self.grid[enPassantPawn.row, enPassantPawn.col].color == piece.color.opposite():
enPassantTarget = emptyLocation()
if move.isDoublePush():
enPassantTarget = move.targetSquare + piece.color.bottomSide()
# Castling check: have the rooks moved?
if piece.kind == Rook:
case piece.color:
of White:
if move.startSquare.row == piece.getStartRow():
if move.startSquare.col == 0:
# Queen side
castlingAvailable.white.queen = false
elif move.startSquare.col == 7:
# King side
castlingAvailable.white.king = false
of Black:
if move.startSquare.row == piece.getStartRow():
if move.startSquare.col == 0:
# Queen side
castlingAvailable.black.queen = false
elif move.startSquare.col == 7:
# King side
castlingAvailable.black.king = false
else:
discard
# Has a rook been captured?
if move.isCapture():
let captured = self.grid[move.targetSquare.row, move.targetSquare.col]
if captured.kind == Rook:
case captured.color:
of White:
if move.targetSquare == captured.color.queenSideRook():
# Queen side
castlingAvailable.white.queen = false
elif move.targetSquare == captured.color.kingSideRook():
# King side
castlingAvailable.white.king = false
of Black:
if move.targetSquare == captured.color.queenSideRook():
# Queen side
castlingAvailable.black.queen = false
elif move.targetSquare == captured.color.kingSideRook():
# King side
castlingAvailable.black.king = false
else:
# Unreachable
discard
# Has the king moved?
if piece.kind == King or move.isCastling():
# Revoke all castling rights for the moving king
case piece.color:
of White:
castlingAvailable.white.king = false
castlingAvailable.white.queen = false
of Black:
castlingAvailable.black.king = false
castlingAvailable.black.queen = false
else:
discard
# Create new position
self.position = Position(plyFromRoot: self.position.plyFromRoot + 1,
halfMoveClock: halfMoveClock,
fullMoveCount: fullMoveCount,
turn: self.getActiveColor().opposite,
castlingAvailable: castlingAvailable,
pieces: self.position.pieces,
enPassantSquare: enPassantTarget
)
# Update position metadata
if move.isCastling():
# Move the rook onto the
# correct file when castling
var
location: Location
target: Location
flags: uint16
if move.getCastlingType() == CastleShort:
location = piece.color.kingSideRook()
target = shortCastleRook()
flags = flags or CastleShort.uint16
else:
location = piece.color.queenSideRook()
target = longCastleRook()
flags = flags or CastleLong.uint16
let rook = self.grid[location.row, location.col]
let move = Move(startSquare: location, targetSquare: location + target, flags: flags)
self.movePiece(move, attack=false)
if move.isEnPassant():
# Make the en passant pawn disappear
self.removePiece(move.targetSquare + piece.color.bottomSide(), attack=false)
if move.isPromotion():
# Move is a pawn promotion: get rid of the pawn
# and spawn a new piece
self.removePiece(move.targetSquare, attack=false)
case move.getPromotionType():
of PromoteToBishop:
self.spawnPiece(move.targetSquare, Piece(kind: Bishop, color: piece.color))
of PromoteToKnight:
self.spawnPiece(move.targetSquare, Piece(kind: Knight, color: piece.color))
of PromoteToRook:
self.spawnPiece(move.targetSquare, Piece(kind: Rook, color: piece.color))
of PromoteToQueen:
self.spawnPiece(move.targetSquare, Piece(kind: Queen, color: piece.color))
else:
discard
if move.isCapture():
# Get rid of captured pieces
self.removePiece(move.targetSquare, attack=false, empty=false)
# Move the piece to its target square and update attack metadata
self.movePiece(move)
# TODO: Remove this, once I figure out what the heck is wrong
# with updating the board representation
self.resetBoard()
proc spawnPiece(self: ChessBoard, location: Location, piece: Piece) =
## Internal helper to "spawn" a given piece at the given
## location. Note that this will overwrite whatever piece
## was previously located there: use with caution. Does
## not automatically update the attacked square metadata
## or other positional information
case piece.color:
of White:
case piece.kind:
of Pawn:
self.position.pieces.white.pawns.add(location)
of Knight:
self.position.pieces.white.knights.add(location)
of Bishop:
self.position.pieces.white.bishops.add(location)
of Rook:
self.position.pieces.white.rooks.add(location)
of Queen:
self.position.pieces.white.queens.add(location)
of King:
self.position.pieces.white.king = location
else:
discard
of Black:
case piece.kind:
of Pawn:
self.position.pieces.black.pawns.add(location)
of Knight:
self.position.pieces.black.knights.add(location)
of Bishop:
self.position.pieces.black.bishops.add(location)
of Rook:
self.position.pieces.black.rooks.add(location)
of Queen:
self.position.pieces.black.queens.add(location)
of King:
self.position.pieces.black.king = location
else:
discard
else:
# Unreachable
discard
self.grid[location.row, location.col] = piece
proc resetBoard*(self: ChessBoard) =
## Resets the internal grid representation
## according to the positional data stored
## in the chessboard
for i in 0..63:
self.grid[i] = emptyPiece()
for loc in self.position.pieces.white.pawns:
self.grid[loc.row, loc.col] = Piece(color: White, kind: Pawn)
for loc in self.position.pieces.black.pawns:
self.grid[loc.row, loc.col] = Piece(color: Black, kind: Pawn)
for loc in self.position.pieces.white.bishops:
self.grid[loc.row, loc.col] = Piece(color: White, kind: Bishop)
for loc in self.position.pieces.black.bishops:
self.grid[loc.row, loc.col] = Piece(color: Black, kind: Bishop)
for loc in self.position.pieces.white.knights:
self.grid[loc.row, loc.col] = Piece(color: White, kind: Knight)
for loc in self.position.pieces.black.knights:
self.grid[loc.row, loc.col] = Piece(color: Black, kind: Knight)
for loc in self.position.pieces.white.rooks:
self.grid[loc.row, loc.col] = Piece(color: White, kind: Rook)
for loc in self.position.pieces.black.rooks:
self.grid[loc.row, loc.col] = Piece(color: Black, kind: Rook)
for loc in self.position.pieces.white.queens:
self.grid[loc.row, loc.col] = Piece(color: White, kind: Queen)
for loc in self.position.pieces.black.queens:
self.grid[loc.row, loc.col] = Piece(color: Black, kind: Queen)
self.grid[self.position.pieces.white.king.row, self.position.pieces.white.king.col] = Piece(color: White, kind: King)
self.grid[self.position.pieces.black.king.row, self.position.pieces.black.king.col] = Piece(color: Black, kind: King)
proc undoLastMove*(self: ChessBoard) =
if self.positions.len() > 0:
self.position = self.positions.pop()
self.resetBoard()
proc isLegal(self: ChessBoard, move: Move): bool {.inline.} =
## Returns whether the given move is legal
if self.grid[move.startSquare.row, move.startSquare.col].color != self.getActiveColor():
return false
return move in self.generateMoves(move.startSquare)
proc makeMove*(self: ChessBoard, move: Move): Move {.discardable.} =
## Makes a move on the board
result = move
if not self.isLegal(move):
return emptyMove()
self.doMove(move)
proc toChar*(piece: Piece): char =
if piece.color == White:
return char(piece.kind).toUpperAscii()
return char(piece.kind)
proc `$`*(self: ChessBoard): string =
result &= "- - - - - - - -"
for i in 0..7:
result &= "\n"
for j in 0..7:
let piece = self.grid[i, j]
if piece.kind == Empty:
result &= "x "
continue
result &= &"{piece.toChar()} "
result &= &"{rankToColumn(i + 1) + 1}"
result &= "\n- - - - - - - -"
result &= "\na b c d e f g h"
proc toPretty*(piece: Piece): string =
case piece.color:
of White:
case piece.kind:
of King:
return "\U2654"
of Queen:
return "\U2655"
of Rook:
return "\U2656"
of Bishop:
return "\U2657"
of Knight:
return "\U2658"
of Pawn:
return "\U2659"
else:
discard
of Black:
case piece.kind:
of King:
return "\U265A"
of Queen:
return "\U265B"
of Rook:
return "\U265C"
of Bishop:
return "\U265D"
of Knight:
return "\U265E"
of Pawn:
return "\240\159\168\133"
else:
discard
else:
discard
proc pretty*(self: ChessBoard): string =
## Returns a colored version of the
## board for easier visualization
for i in 0..7:
if i > 0:
result &= "\n"
for j in 0..7:
# Equivalent to (i + j) mod 2
# (I'm just evil)
if ((i + j) and 1) == 0:
result &= "\x1b[39;44;1m"
else:
result &= "\x1b[39;40;1m"
let piece = self.grid[i, j]
if piece.kind == Empty:
result &= " \x1b[0m"
else:
result &= &"{piece.toPretty()} \x1b[0m"
result &= &" \x1b[33;1m{rankToColumn(i + 1) + 1}\x1b[0m"
result &= "\n\x1b[31;1ma b c d e f g h"
result &= "\x1b[0m"
proc toFEN*(self: ChessBoard): string =
## Returns a FEN string of the current
## position in the chessboard
var skip: int
# Piece placement data
for i in 0..7:
skip = 0
for j in 0..7:
let piece = self.grid[i, j]
if piece.kind == Empty:
inc(skip)
elif skip > 0:
result &= &"{skip}{piece.toChar()}"
skip = 0
else:
result &= piece.toChar()
if skip > 0:
result &= $skip
if i < 7:
result &= "/"
result &= " "
# Active color
result &= (if self.getActiveColor() == White: "w" else: "b")
result &= " "
# Castling availability
let castleWhite = self.position.castlingAvailable.white
let castleBlack = self.position.castlingAvailable.black
if not (castleBlack.king or castleBlack.queen or castleWhite.king or castleWhite.queen):
result &= "-"
else:
if castleWhite.king:
result &= "K"
if castleWhite.queen:
result &= "Q"
if castleBlack.king:
result &= "k"
if castleBlack.queen:
result &= "q"
result &= " "
# En passant target
if self.getEnPassantTarget() == emptyLocation():
result &= "-"
else:
result &= self.getEnPassantTarget().locationToAlgebraic()
result &= " "
# Halfmove clock
result &= $self.getHalfMoveCount()
result &= " "
# Fullmove number
result &= $self.getMoveCount()
proc perft*(self: ChessBoard, ply: int, verbose: bool = false, divide: bool = false, bulk: bool = false): CountData =
## Counts (and debugs) the number of legal positions reached after
## the given number of ply
let moves = self.generateAllMoves()
if not bulk:
if len(moves) == 0 and self.inCheck():
result.checkmates = 1
if ply == 0:
result.nodes = 1
return
elif ply == 1 and bulk:
if divide:
var postfix = ""
for move in moves:
case move.getPromotionType():
of PromoteToBishop:
postfix = "b"
of PromoteToKnight:
postfix = "n"
of PromoteToRook:
postfix = "r"
of PromoteToQueen:
postfix = "q"
else:
postfix = ""
echo &"{move.startSquare.locationToAlgebraic()}{move.targetSquare.locationToAlgebraic()}{postfix}: 1"
if verbose:
echo ""
return (uint64(len(moves)), 0, 0, 0, 0, 0, 0)
for move in moves:
if verbose:
let canCastle = self.canCastle(self.getActiveColor())
echo &"Ply (from root): {self.position.plyFromRoot}"
echo &"Move: {move.startSquare.locationToAlgebraic()}{move.targetSquare.locationToAlgebraic()}, from ({move.startSquare.row}, {move.startSquare.col}) to ({move.targetSquare.row}, {move.targetSquare.col})"
echo &"Turn: {self.getActiveColor()}"
echo &"Piece: {self.grid[move.startSquare.row, move.startSquare.col].kind}"
echo &"Flags: {move.getFlags()}"
echo &"In check: {(if self.inCheck(): \"yes\" else: \"no\")}"
echo &"Can castle:\n - King side: {(if canCastle.king: \"yes\" else: \"no\")}\n - Queen side: {(if canCastle.queen: \"yes\" else: \"no\")}"
echo &"Position before move: {self.toFEN()}"
stdout.write("En Passant target: ")
if self.getEnPassantTarget() != emptyLocation():
echo self.getEnPassantTarget().locationToAlgebraic()
else:
echo "None"
echo "\n", self.pretty()
self.doMove(move)
if ply == 1:
if move.isCapture():
inc(result.captures)
if move.isCastling():
inc(result.castles)
if move.isPromotion():
inc(result.promotions)
if move.isEnPassant():
inc(result.enPassant)
if self.inCheck():
# Opponent king is in check
inc(result.checks)
if verbose:
let canCastle = self.canCastle(self.getActiveColor())
echo "\n"
echo &"Opponent in check: {(if self.inCheck(): \"yes\" else: \"no\")}"
echo &"Opponent can castle:\n - King side: {(if canCastle.king: \"yes\" else: \"no\")}\n - Queen side: {(if canCastle.queen: \"yes\" else: \"no\")}"
echo &"Position after move: {self.toFEN()}"
echo "\n", self.pretty()
stdout.write("nextpos>> ")
try:
discard readLine(stdin)
except IOError:
discard
except EOFError:
discard
let next = self.perft(ply - 1, verbose, bulk=bulk)
self.undoLastMove()
if divide and (not bulk or ply > 1):
var postfix = ""
if move.isPromotion():
case move.getPromotionType():
of PromoteToBishop:
postfix = "b"
of PromoteToKnight:
postfix = "n"
of PromoteToRook:
postfix = "r"
of PromoteToQueen:
postfix = "q"
else:
discard
echo &"{move.startSquare.locationToAlgebraic()}{move.targetSquare.locationToAlgebraic()}{postfix}: {next.nodes}"
if verbose:
echo ""
result.nodes += next.nodes
result.captures += next.captures
result.checks += next.checks
result.promotions += next.promotions
result.castles += next.castles
result.enPassant += next.enPassant
result.checkmates += next.checkmates
proc handleGoCommand(board: ChessBoard, command: seq[string]) =
if len(command) < 2:
echo &"Error: go: invalid number of arguments"
return
case command[1]:
of "perft":
if len(command) == 2:
echo &"Error: go: perft: invalid number of arguments"
return
var
args = command[2].splitWhitespace()
bulk = false
verbose = false
if args.len() > 1:
var ok = true
for arg in args[1..^1]:
case arg:
of "bulk":
bulk = true
of "verbose":
verbose = true
else:
echo &"Error: go: perft: invalid argument '{args[1]}'"
ok = false
break
if not ok:
return
try:
let ply = parseInt(args[0])
if bulk:
let t = cpuTime()
let nodes = board.perft(ply, divide=true, bulk=true, verbose=verbose).nodes
echo &"\nNodes searched (bulk-counting: on): {nodes}"
echo &"Time taken: {round(cpuTime() - t, 3)} seconds\n"
else:
let t = cpuTime()
let data = board.perft(ply, divide=true, verbose=verbose)
echo &"\nNodes searched (bulk-counting: off): {data.nodes}"
echo &" - Captures: {data.captures}"
echo &" - Checks: {data.checks}"
echo &" - E.P: {data.enPassant}"
echo &" - Checkmates: {data.checkmates}"
echo &" - Castles: {data.castles}"
echo &" - Promotions: {data.promotions}"
echo ""
echo &"Time taken: {round(cpuTime() - t, 3)} seconds"
except ValueError:
echo "Error: go: perft: invalid depth"
else:
echo &"Error: go: unknown subcommand '{command[1]}'"
proc handleMoveCommand(board: ChessBoard, command: seq[string]): Move {.discardable.} =
if len(command) != 2:
echo &"Error: move: invalid number of arguments"
return
let moveString = command[1]
if len(moveString) notin 4..5:
echo &"Error: move: invalid move syntax"
return
var
startSquare: Location
targetSquare: Location
flags: uint16
try:
startSquare = moveString[0..1].algebraicToLocation()
except ValueError:
echo &"Error: move: invalid start square ({moveString[0..1]})"
return
try:
targetSquare = moveString[2..3].algebraicToLocation()
except ValueError:
echo &"Error: move: invalid target square ({moveString[2..3]})"
return
# Since the user tells us just the source and target square of the move,
# we have to figure out all the flags by ourselves (whether it's a double
# push, a capture, a promotion, castling, etc.)
if board.grid[targetSquare.row, targetSquare.col].kind != Empty:
flags = flags or Capture.uint16
elif board.grid[startSquare.row, startSquare.col].kind == Pawn and abs(startSquare.row - targetSquare.row) == 2:
flags = flags or DoublePush.uint16
if len(moveString) == 5:
# Promotion
case moveString[4]:
of 'b':
flags = flags or PromoteToBishop.uint16
of 'n':
flags = flags or PromoteToKnight.uint16
of 'q':
flags = flags or PromoteToQueen.uint16
of 'r':
flags = flags or PromoteToRook.uint16
else:
echo &"Error: move: invalid promotion type"
return
var move = Move(startSquare: startSquare, targetSquare: targetSquare, flags: flags)
if board.getPiece(move.startSquare).kind == King and move.startSquare == board.getActiveColor().getKingStartingPosition():
if move.targetSquare == move.startSquare + longCastleKing():
move.flags = move.flags or CastleLong.uint16
elif move.targetSquare == move.startSquare + shortCastleKing():
move.flags = move.flags or CastleShort.uint16
result = board.makeMove(move)
if result == emptyMove():
echo &"Error: move: {moveString} is illegal"
proc handlePositionCommand(board: var ChessBoard, command: seq[string]) =
if len(command) < 2:
echo "Error: position: invalid number of arguments"
return
# Makes sure we don't leave the board in an invalid state if
# some error occurs
var tempBoard = newChessboard()
case command[1]:
of "startpos":
tempBoard = newDefaultChessboard()
if command.len() > 2:
let args = command[2].splitWhitespace()
if args.len() > 0:
var i = 0
while i < args.len():
case args[i]:
of "moves":
var j = i + 1
while j < args.len():
if handleMoveCommand(tempBoard, @["move", args[j]]) == emptyMove():
return
inc(j)
inc(i)
board = tempBoard
of "fen":
if len(command) == 2:
echo &"Current position: {board.toFEN()}"
return
var
args = command[2].splitWhitespace()
fenString = ""
stop = 0
for i, arg in args:
if arg in ["moves", ]:
break
if i > 0:
fenString &= " "
fenString &= arg
inc(stop)
args = args[stop..^1]
try:
tempBoard = newChessboardFromFEN(fenString)
except ValueError:
echo &"Error: position: {getCurrentExceptionMsg()}"
return
if args.len() > 0:
var i = 0
while i < args.len():
case args[i]:
of "moves":
var j = i + 1
while j < args.len():
if handleMoveCommand(tempBoard, @["move", args[j]]) == emptyMove():
return
inc(j)
inc(i)
board = tempBoard
of "print":
echo board
of "pretty":
echo board.pretty()
proc handleUCICommand(board: var ChessBoard, command: seq[string]): bool =
if len(command) != 1:
echo "error: uci: invalid number of arguments"
return false
echo "id name Nimfish 0.1"
echo "id author Nocturn9x & Contributors (see LICENSE)"
# TODO
echo "uciok"
return true
const HELP_TEXT = """Nimfish help menu:
- go: Begin a search
Subcommands:
- perft <depth> [options]: Run the performance test at the given depth (in ply) and
print the results
Options:
- bulk: Enable bulk-counting (significantly faster, gives less statistics)
- verbose: Enable move debugging (for each and every move, not recommended on large searches)
Example: go perft 5 bulk
- position: Get/set board position
Subcommands:
- fen [string]: Set the board to the given fen string if one is provided, or print
the current position as a FEN string if no arguments are given
- startpos: Set the board to the starting position
- pretty: Pretty-print the current position
- print: Print the current position using ASCII characters only
Options:
- moves {moveList}: Perform the given moves (space-separated, all-lowercase)
in algebraic notation after the position is loaded. This option only applies
to the "startpos" and "fen" subcommands: it is ignored otherwise
Examples:
- position startpos
- position fen "..." moves a2a3 a7a6
- clear: Clear the screen
- move <move>: Perform the given move in algebraic notation
- castle: Print castling rights for each side
- check: Print if the current side to move is in check
- undo: Undoes the last move that was performed. Can be used in succession
- turn: Print which side is to move
- ep: Print the current en passant target
- pretty: Shorthand for "position pretty"
- print: Shorthand for "position print"
- get <square>: Get the piece on the given square
- uci: enter UCI mode (WIP)
"""
proc main: int =
## Nimfish's control interface
echo "Nimfish by nocturn9x (see LICENSE)"
var
board = newDefaultChessboard()
uciMode = false
while true:
var
cmd: seq[string]
cmdStr: string
try:
if not uciMode:
stdout.write(">>> ")
stdout.flushFile()
cmdStr = readLine(stdin).strip(leading=true, trailing=true, chars={'\t', ' '})
if cmdStr.len() == 0:
continue
cmd = cmdStr.splitWhitespace(maxsplit=2)
case cmd[0]:
of "uci":
if handleUCICommand(board, cmd):
uciMode = true
of "clear":
echo "\x1Bc"
of "help":
echo HELP_TEXT
of "go":
handleGoCommand(board, cmd)
of "position":
handlePositionCommand(board, cmd)
of "move":
handleMoveCommand(board, cmd)
of "pretty", "print":
handlePositionCommand(board, @["position", cmd[0]])
of "undo":
board.undoLastMove()
of "turn":
echo &"Active color: {board.getActiveColor()}"
of "ep":
let target = board.getEnPassantTarget()
if target != emptyLocation():
echo &"En passant target: {target.locationToAlgebraic()}"
else:
echo "En passant target: None"
of "get":
if len(cmd) != 2:
echo "error: get: invalid number of arguments"
continue
try:
echo board.getPiece(cmd[1])
except ValueError:
echo "error: get: invalid square"
continue
of "castle":
let canCastle = board.canCastle()
echo &"Castling rights for {($board.getActiveColor()).toLowerAscii()}:\n - King side: {(if canCastle.king: \"yes\" else: \"no\")}\n - Queen side: {(if canCastle.queen: \"yes\" else: \"no\")}"
of "check":
echo &"{board.getActiveColor()} king in check: {(if board.inCheck(): \"yes\" else: \"no\")}"
else:
echo &"Unknown command '{cmd[0]}'. Type 'help' for more information."
except IOError:
echo ""
return -1
except EOFError:
echo ""
return 0
when isMainModule:
proc testPiece(piece: Piece, kind: PieceKind, color: PieceColor) =
doAssert piece.kind == kind and piece.color == color, &"expected piece of kind {kind} and color {color}, got {piece.kind} / {piece.color} instead"
proc testPieceCount(board: ChessBoard, kind: PieceKind, color: PieceColor, count: int) =
let pieces = board.countPieces(kind, color)
doAssert pieces == count, &"expected {count} pieces of kind {kind} and color {color}, got {pieces} instead"
var b = newDefaultChessboard()
# Ensure correct number of pieces
testPieceCount(b, Pawn, White, 8)
testPieceCount(b, Pawn, Black, 8)
testPieceCount(b, Knight, White, 2)
testPieceCount(b, Knight, Black, 2)
testPieceCount(b, Bishop, White, 2)
testPieceCount(b, Bishop, Black, 2)
testPieceCount(b, Rook, White, 2)
testPieceCount(b, Rook, Black, 2)
testPieceCount(b, Queen, White, 1)
testPieceCount(b, Queen, Black, 1)
testPieceCount(b, King, White, 1)
testPieceCount(b, King, Black, 1)
# Ensure pieces are in the correct location
# Pawns
for loc in ["a2", "b2", "c2", "d2", "e2", "f2", "g2", "h2"]:
testPiece(b.getPiece(loc), Pawn, White)
for loc in ["a7", "b7", "c7", "d7", "e7", "f7", "g7", "h7"]:
testPiece(b.getPiece(loc), Pawn, Black)
# Rooks
testPiece(b.getPiece("a1"), Rook, White)
testPiece(b.getPiece("h1"), Rook, White)
testPiece(b.getPiece("a8"), Rook, Black)
testPiece(b.getPiece("h8"), Rook, Black)
# Knights
testPiece(b.getPiece("b1"), Knight, White)
testPiece(b.getPiece("g1"), Knight, White)
testPiece(b.getPiece("b8"), Knight, Black)
testPiece(b.getPiece("g8"), Knight, Black)
# Bishops
testPiece(b.getPiece("c1"), Bishop, White)
testPiece(b.getPiece("f1"), Bishop, White)
testPiece(b.getPiece("c8"), Bishop, Black)
testPiece(b.getPiece("f8"), Bishop, Black)
# Kings
testPiece(b.getPiece("e1"), King, White)
testPiece(b.getPiece("e8"), King, Black)
# Queens
testPiece(b.getPiece("d1"), Queen, White)
testPiece(b.getPiece("d8"), Queen, Black)
setControlCHook(proc () {.noconv.} = quit(0))
quit(main())