added missing files

This commit is contained in:
Productive2 2020-10-22 10:19:00 +02:00
parent 1daae9c30a
commit ccc78148d8
28 changed files with 2388 additions and 1099 deletions

4
JAPL/__init__.py Normal file
View File

@ -0,0 +1,4 @@
from .lexer import Lexer
from .parser import Parser
from .interpreter import Interpreter

View File

@ -1,352 +1,352 @@
import operator
from typing import List
from .types.callable import Callable
from .types.japlclass import JAPLClass
from .types.instance import JAPLInstance
from .meta.environment import Environment
from .meta.tokentype import TokenType
from .meta.exceptions import JAPLError, BreakException, ReturnException
from .types.native import Clock, Type, JAPLFunction, Truthy, Stringify, PrintFunction, IsInstance, IsSubclass, IsSuperclass
from .meta.expression import Expression, Variable, Literal, Logical, Binary, Unary, Grouping, Assignment, Call, Get, Set
from .meta.statement import Statement, StatementExpr, If, While, Del, Break, Return, Var, Block, Function, Class
class Interpreter(Expression.Visitor, Statement.Visitor):
"""
An interpreter for the JAPL
programming language
"""
OPS = {TokenType.MINUS: operator.sub, TokenType.PLUS: operator.add, TokenType.SLASH: operator.truediv,
TokenType.STAR: operator.mul, TokenType.DEQ: operator.eq, TokenType.GT: operator.gt,
TokenType.GE: operator.ge, TokenType.LT: operator.lt, TokenType.LE: operator.le, TokenType.EQ: operator.eq,
TokenType.NE: operator.ne, TokenType.MOD: operator.mod, TokenType.POW: operator.pow}
def __init__(self):
"""Object constructor"""
self.environment = Environment()
self.locals = {}
self.globals = self.environment
self.globals.define("clock", Clock())
self.globals.define("type", Type())
self.globals.define("truthy", Truthy())
self.globals.define("stringify", Stringify())
self.globals.define("print", PrintFunction())
self.globals.define("isinstance", IsInstance())
self.globals.define("issuperclass", IsSuperclass())
self.globals.define("issubclass", IsSubclass())
def number_operand(self, op, operand):
"""
An helper method to check if the operand
to a unary operator is a number
"""
if isinstance(operand, (int, float)):
return
raise JAPLError(op,
f"Unsupported unary operator '{op.lexeme}' for object of type '{type(operand).__name__}'")
def compatible_operands(self, op, left, right):
"""
Helper method to check types when doing binary
operations
"""
if op.kind == TokenType.SLASH and right == 0:
raise JAPLError(op, "Cannot divide by 0")
elif isinstance(left, (bool, type(None))) or isinstance(right, (bool, type(None))):
if op.kind not in (TokenType.DEQ, TokenType.NE):
raise JAPLError(op, f"Unsupported binary operator '{op.lexeme}' for objects of type '{type(left).__name__}' and '{type(right).__name__}'")
return
elif isinstance(left, (int, float)) and isinstance(right, (int, float)):
return
elif op.kind in (TokenType.PLUS, TokenType.STAR, TokenType.DEQ, TokenType.NE):
if isinstance(left, str) and isinstance(right, str):
return
elif isinstance(left, str) and isinstance(right, int):
return
elif isinstance(left, int) and isinstance(right, str):
return
raise JAPLError(operator, f"Unsupported binary operator '{op.lexeme}' for objects of type '{type(left).__name__}' and '{type(right).__name__}'")
def visit_literal(self, expr: Literal):
"""
Visits a Literal node in the Abstract Syntax Tree,
returning its value to the visitor
"""
return expr.value
def visit_logical(self, expr: Logical):
"""Visits a logical node"""
left = self.eval(expr.left)
if expr.operator.kind == TokenType.OR:
if bool(left):
return left
elif not bool(left):
return self.eval(expr.right)
return self.eval(expr.right)
def eval(self, expr: Expression):
"""
Evaluates an expression by calling its accept()
method and passing self to it. This mechanism is known
as the 'Visitor Pattern': the expression object will
later call the interpreter's appropriate method to
evaluate itself
"""
return expr.accept(self)
def visit_grouping(self, grouping: Grouping):
"""
Visits a Grouping node in the Abstract Syntax Tree,
recursively evaluating its subexpressions
"""
return self.eval(grouping.expr)
def visit_unary(self, expr: Unary):
"""
Visits a Unary node in the Abstract Syntax Teee,
returning the negation of the given object, if
the operation is supported
"""
right = self.eval(expr.right)
self.number_operand(expr.operator, right)
if expr.operator.kind == TokenType.NEG:
return not right
return -right
def visit_binary(self, expr: Binary):
"""
Visits a Binary node in the Abstract Syntax Tree,
recursively evaulating both operands first and then
performing the operation specified by the operator
"""
left = self.eval(expr.left)
right = self.eval(expr.right)
self.compatible_operands(expr.operator, left, right)
return self.OPS[expr.operator.kind](left, right)
def visit_statement_expr(self, stmt: StatementExpr):
"""
Visits an expression statement and evaluates it
"""
self.eval(stmt.expression)
def visit_if(self, statement: If):
"""
Visits an If node and evaluates it
"""
if self.eval(statement.condition):
self.exec(statement.then_branch)
elif statement.else_branch:
self.exec(statement.else_branch)
def visit_class(self, stmt: Class):
"""Visits a class declaration"""
superclass = None
if stmt.superclass:
superclass = self.eval(stmt.superclass)
if not isinstance(superclass, JAPLClass):
raise JAPLError(stmt.superclass.name, "Superclass must be a class")
self.environment.define(stmt.name.lexeme, None)
if superclass:
environment = Environment(self.environment)
environment.define("super", superclass)
else:
environment = self.environment
methods = {}
for method in stmt.methods:
func = JAPLFunction(method, environment)
methods[method.name.lexeme] = func
klass = JAPLClass(stmt.name.lexeme, methods, superclass)
if superclass:
self.environment = environment.enclosing
self.environment.assign(stmt.name, klass)
def visit_while(self, statement: While):
"""
Visits a while node and executes it
"""
while self.eval(statement.condition):
try:
self.exec(statement.body)
except BreakException:
break
def visit_var_stmt(self, stmt: Var):
"""
Visits a var statement
"""
val = None
if stmt.init:
val = self.eval(stmt.init)
self.environment.define(stmt.name.lexeme, val)
def lookup(self, name, expr: Expression):
"""
Performs name lookups in the closest scope
"""
distance = self.locals.get(expr)
if distance is not None:
return self.environment.get_at(distance, name.lexeme)
else:
return self.globals.get(name)
def visit_var_expr(self, expr: Variable):
"""
Visits a var expression
"""
return self.lookup(expr.name, expr)
def visit_del(self, stmt: Del):
"""
Visits a del expression
"""
return self.environment.delete(stmt.name)
def visit_assign(self, stmt: Assignment):
"""
Visits an assignment expression
"""
right = self.eval(stmt.value)
distance = self.locals.get(stmt)
if distance is not None:
self.environment.assign_at(distance, stmt.name, right)
else:
self.globals.assign(stmt.name, right)
return right
def visit_block(self, stmt: Block):
"""
Visits a new scope block
"""
return self.execute_block(stmt.statements, Environment(self.environment))
def visit_break(self, stmt: Break):
"""
Visits a break statement
"""
raise BreakException()
def visit_call_expr(self, expr: Call):
"""
Visits a call expression
"""
callee = self.eval(expr.callee)
if not isinstance(callee, Callable):
raise JAPLError(expr.paren, f"'{type(callee).__name__}' is not callable")
arguments = []
for argument in expr.arguments:
arguments.append(self.eval(argument))
function = callee
if function.arity != len(arguments):
raise JAPLError(expr.paren, f"Expecting {function.arity} arguments, got {len(arguments)}")
return function.call(self, arguments)
def execute_block(self, statements: List[Statement], scope: Environment):
"""
Executes a block of statements
"""
prev = self.environment
try:
self.environment = scope
for statement in statements:
self.exec(statement)
finally:
self.environment = prev
def visit_return(self, statement: Return):
"""
Visits a return statement
"""
value = None
if statement.value:
value = self.eval(statement.value)
raise ReturnException(value)
def visit_function(self, statement: Function):
"""
Visits a function
"""
function = JAPLFunction(statement, self.environment)
self.environment.define(statement.name.lexeme, function)
def visit_get(self, expr: Get):
"""Visits property get expressions and evaluates them"""
obj = self.eval(expr.object)
if isinstance(obj, JAPLInstance):
return obj.get(expr.name)
raise JAPLError(expr.name, "Only instances have properties")
def visit_set(self, expr: Set):
"""Visits property set expressions and evaluates them"""
obj = self.eval(expr.object)
if not isinstance(obj, JAPLInstance):
raise JAPLError(expr, "Only instances have fields")
value = self.eval(expr.value)
obj.set(expr.name, value)
def visit_this(self, expr):
"""Evaluates 'this' expressions"""
return self.lookup(expr.keyword, expr)
def visit_super(self, expr):
"""Evaluates 'super' expressions"""
distance = self.locals.get(expr)
superclass = self.environment.get_at(distance, "super")
instance = self.environment.get_at(distance - 1, "this")
meth = superclass.get_method(expr.method.lexeme)
if not meth:
raise JAPLError(expr.method, f"Undefined property '{expr.method.lexeme}'")
return meth.bind(instance)
def exec(self, statement: Statement):
"""
Executes a statement
"""
statement.accept(self)
def interpret(self, statements: List[Statement]):
"""
Executes a JAPL program
"""
for statement in statements:
self.exec(statement)
def resolve(self, expr: Expression, depth: int):
"""
Stores the result of the name resolution: this
info will be used later to know exactly in which
environment to look up a given variable
"""
self.locals[expr] = depth # How many environments to skip!
import operator
from typing import List
from .types.callable import Callable
from .types.japlclass import JAPLClass
from .types.instance import JAPLInstance
from .meta.environment import Environment
from .meta.tokentype import TokenType
from .meta.exceptions import JAPLError, BreakException, ReturnException
from .types.native import Clock, Type, JAPLFunction, Truthy, Stringify, PrintFunction, IsInstance, IsSubclass, IsSuperclass
from .meta.expression import Expression, Variable, Literal, Logical, Binary, Unary, Grouping, Assignment, Call, Get, Set
from .meta.statement import Statement, StatementExpr, If, While, Del, Break, Return, Var, Block, Function, Class
class Interpreter(Expression.Visitor, Statement.Visitor):
"""
An interpreter for the JAPL
programming language
"""
OPS = {TokenType.MINUS: operator.sub, TokenType.PLUS: operator.add, TokenType.SLASH: operator.truediv,
TokenType.STAR: operator.mul, TokenType.DEQ: operator.eq, TokenType.GT: operator.gt,
TokenType.GE: operator.ge, TokenType.LT: operator.lt, TokenType.LE: operator.le, TokenType.EQ: operator.eq,
TokenType.NE: operator.ne, TokenType.MOD: operator.mod, TokenType.POW: operator.pow}
def __init__(self):
"""Object constructor"""
self.environment = Environment()
self.locals = {}
self.globals = self.environment
self.globals.define("clock", Clock())
self.globals.define("type", Type())
self.globals.define("truthy", Truthy())
self.globals.define("stringify", Stringify())
self.globals.define("print", PrintFunction())
self.globals.define("isinstance", IsInstance())
self.globals.define("issuperclass", IsSuperclass())
self.globals.define("issubclass", IsSubclass())
def number_operand(self, op, operand):
"""
An helper method to check if the operand
to a unary operator is a number
"""
if isinstance(operand, (int, float)):
return
raise JAPLError(op,
f"Unsupported unary operator '{op.lexeme}' for object of type '{type(operand).__name__}'")
def compatible_operands(self, op, left, right):
"""
Helper method to check types when doing binary
operations
"""
if op.kind == TokenType.SLASH and right == 0:
raise JAPLError(op, "Cannot divide by 0")
elif isinstance(left, (bool, type(None))) or isinstance(right, (bool, type(None))):
if op.kind not in (TokenType.DEQ, TokenType.NE):
raise JAPLError(op, f"Unsupported binary operator '{op.lexeme}' for objects of type '{type(left).__name__}' and '{type(right).__name__}'")
return
elif isinstance(left, (int, float)) and isinstance(right, (int, float)):
return
elif op.kind in (TokenType.PLUS, TokenType.STAR, TokenType.DEQ, TokenType.NE):
if isinstance(left, str) and isinstance(right, str):
return
elif isinstance(left, str) and isinstance(right, int):
return
elif isinstance(left, int) and isinstance(right, str):
return
raise JAPLError(operator, f"Unsupported binary operator '{op.lexeme}' for objects of type '{type(left).__name__}' and '{type(right).__name__}'")
def visit_literal(self, expr: Literal):
"""
Visits a Literal node in the Abstract Syntax Tree,
returning its value to the visitor
"""
return expr.value
def visit_logical(self, expr: Logical):
"""Visits a logical node"""
left = self.eval(expr.left)
if expr.operator.kind == TokenType.OR:
if bool(left):
return left
elif not bool(left):
return self.eval(expr.right)
return self.eval(expr.right)
def eval(self, expr: Expression):
"""
Evaluates an expression by calling its accept()
method and passing self to it. This mechanism is known
as the 'Visitor Pattern': the expression object will
later call the interpreter's appropriate method to
evaluate itself
"""
return expr.accept(self)
def visit_grouping(self, grouping: Grouping):
"""
Visits a Grouping node in the Abstract Syntax Tree,
recursively evaluating its subexpressions
"""
return self.eval(grouping.expr)
def visit_unary(self, expr: Unary):
"""
Visits a Unary node in the Abstract Syntax Teee,
returning the negation of the given object, if
the operation is supported
"""
right = self.eval(expr.right)
self.number_operand(expr.operator, right)
if expr.operator.kind == TokenType.NEG:
return not right
return -right
def visit_binary(self, expr: Binary):
"""
Visits a Binary node in the Abstract Syntax Tree,
recursively evaulating both operands first and then
performing the operation specified by the operator
"""
left = self.eval(expr.left)
right = self.eval(expr.right)
self.compatible_operands(expr.operator, left, right)
return self.OPS[expr.operator.kind](left, right)
def visit_statement_expr(self, stmt: StatementExpr):
"""
Visits an expression statement and evaluates it
"""
self.eval(stmt.expression)
def visit_if(self, statement: If):
"""
Visits an If node and evaluates it
"""
if self.eval(statement.condition):
self.exec(statement.then_branch)
elif statement.else_branch:
self.exec(statement.else_branch)
def visit_class(self, stmt: Class):
"""Visits a class declaration"""
superclass = None
if stmt.superclass:
superclass = self.eval(stmt.superclass)
if not isinstance(superclass, JAPLClass):
raise JAPLError(stmt.superclass.name, "Superclass must be a class")
self.environment.define(stmt.name.lexeme, None)
if superclass:
environment = Environment(self.environment)
environment.define("super", superclass)
else:
environment = self.environment
methods = {}
for method in stmt.methods:
func = JAPLFunction(method, environment)
methods[method.name.lexeme] = func
klass = JAPLClass(stmt.name.lexeme, methods, superclass)
if superclass:
self.environment = environment.enclosing
self.environment.assign(stmt.name, klass)
def visit_while(self, statement: While):
"""
Visits a while node and executes it
"""
while self.eval(statement.condition):
try:
self.exec(statement.body)
except BreakException:
break
def visit_var_stmt(self, stmt: Var):
"""
Visits a var statement
"""
val = None
if stmt.init:
val = self.eval(stmt.init)
self.environment.define(stmt.name.lexeme, val)
def lookup(self, name, expr: Expression):
"""
Performs name lookups in the closest scope
"""
distance = self.locals.get(expr)
if distance is not None:
return self.environment.get_at(distance, name.lexeme)
else:
return self.globals.get(name)
def visit_var_expr(self, expr: Variable):
"""
Visits a var expression
"""
return self.lookup(expr.name, expr)
def visit_del(self, stmt: Del):
"""
Visits a del expression
"""
return self.environment.delete(stmt.name)
def visit_assign(self, stmt: Assignment):
"""
Visits an assignment expression
"""
right = self.eval(stmt.value)
distance = self.locals.get(stmt)
if distance is not None:
self.environment.assign_at(distance, stmt.name, right)
else:
self.globals.assign(stmt.name, right)
return right
def visit_block(self, stmt: Block):
"""
Visits a new scope block
"""
return self.execute_block(stmt.statements, Environment(self.environment))
def visit_break(self, stmt: Break):
"""
Visits a break statement
"""
raise BreakException()
def visit_call_expr(self, expr: Call):
"""
Visits a call expression
"""
callee = self.eval(expr.callee)
if not isinstance(callee, Callable):
raise JAPLError(expr.paren, f"'{type(callee).__name__}' is not callable")
arguments = []
for argument in expr.arguments:
arguments.append(self.eval(argument))
function = callee
if function.arity != len(arguments):
raise JAPLError(expr.paren, f"Expecting {function.arity} arguments, got {len(arguments)}")
return function.call(self, arguments)
def execute_block(self, statements: List[Statement], scope: Environment):
"""
Executes a block of statements
"""
prev = self.environment
try:
self.environment = scope
for statement in statements:
self.exec(statement)
finally:
self.environment = prev
def visit_return(self, statement: Return):
"""
Visits a return statement
"""
value = None
if statement.value:
value = self.eval(statement.value)
raise ReturnException(value)
def visit_function(self, statement: Function):
"""
Visits a function
"""
function = JAPLFunction(statement, self.environment)
self.environment.define(statement.name.lexeme, function)
def visit_get(self, expr: Get):
"""Visits property get expressions and evaluates them"""
obj = self.eval(expr.object)
if isinstance(obj, JAPLInstance):
return obj.get(expr.name)
raise JAPLError(expr.name, "Only instances have properties")
def visit_set(self, expr: Set):
"""Visits property set expressions and evaluates them"""
obj = self.eval(expr.object)
if not isinstance(obj, JAPLInstance):
raise JAPLError(expr, "Only instances have fields")
value = self.eval(expr.value)
obj.set(expr.name, value)
def visit_this(self, expr):
"""Evaluates 'this' expressions"""
return self.lookup(expr.keyword, expr)
def visit_super(self, expr):
"""Evaluates 'super' expressions"""
distance = self.locals.get(expr)
superclass = self.environment.get_at(distance, "super")
instance = self.environment.get_at(distance - 1, "this")
meth = superclass.get_method(expr.method.lexeme)
if not meth:
raise JAPLError(expr.method, f"Undefined property '{expr.method.lexeme}'")
return meth.bind(instance)
def exec(self, statement: Statement):
"""
Executes a statement
"""
statement.accept(self)
def interpret(self, statements: List[Statement]):
"""
Executes a JAPL program
"""
for statement in statements:
self.exec(statement)
def resolve(self, expr: Expression, depth: int):
"""
Stores the result of the name resolution: this
info will be used later to know exactly in which
environment to look up a given variable
"""
self.locals[expr] = depth # How many environments to skip!

View File

@ -1,212 +1,212 @@
from .meta.tokenobject import Token
from .meta.tokentype import TokenType
from .meta.exceptions import ParseError
from typing import List
class Lexer(object):
"""
A simple tokenizer for the JAPL programming
language, scans a input source file and
produces a list of tokens. Some errors
are caught here as well.
"""
TOKENS = {"(": TokenType.LP, ")": TokenType.RP,
"{": TokenType.LB, "}": TokenType.RB,
".": TokenType.DOT, ",": TokenType.COMMA,
"-": TokenType.MINUS, "+": TokenType.PLUS,
";": TokenType.SEMICOLON, "*": TokenType.STAR,
">": TokenType.GT, "<": TokenType.LT,
"=": TokenType.EQ, "!": TokenType.NEG,
"/": TokenType.SLASH, "%": TokenType.MOD}
RESERVED = {"or": TokenType.OR, "and": TokenType.AND,
"class": TokenType.CLASS, "fun": TokenType.FUN,
"if": TokenType.IF, "else": TokenType.ELSE,
"for": TokenType.FOR, "while": TokenType.WHILE,
"var": TokenType.VAR, "nil": TokenType.NIL,
"true": TokenType.TRUE, "false": TokenType.FALSE,
"return": TokenType.RETURN,
"this": TokenType.THIS, "super": TokenType.SUPER,
"del": TokenType.DEL, "break": TokenType.BREAK}
def __init__(self, source: str):
"""Object constructor"""
self.source = source
self.tokens: List[Token] = []
self.line: int = 1 # Points to the line being lexed
self.start: int = 0 # The position of the first character of the current lexeme
self.current: int = 0 # The position of the current character being lexed
def step(self) -> str:
"""
'Steps' one character in the source code and returns it
"""
if self.done():
return ""
self.current += 1
return self.source[self.current - 1]
def peek(self) -> str:
"""
Returns the current character without consuming it
or an empty string if all text has been consumed
"""
if self.done():
return ""
return self.source[self.current]
def peek_next(self) -> str:
"""
Returns the next character after self.current
or an empty string if the input has been consumed
"""
if self.current + 1 >= len(self.source):
return ""
return self.source[self.current + 1]
def string(self, delimiter: str):
"""Parses a string literal"""
while self.peek() != delimiter and not self.done():
if self.peek() == "\n":
self.line += 1
self.step()
if self.done():
raise ParseError(f"unterminated string literal at line {self.line}")
self.step() # Consume the '"'
value = self.source[self.start + 1:self.current - 1] # Get the actual string
self.tokens.append(self.create_token(TokenType.STR, value))
def number(self):
"""Parses a number literal"""
convert = int
while self.peek().isdigit():
self.step()
if self.peek() == ".":
self.step() # Consume the "."
while self.peek().isdigit():
self.step()
convert = float
self.tokens.append(self.create_token(TokenType.NUM,
convert(self.source[self.start:self.current])))
def identifier(self):
"""Parses identifiers and reserved keywords"""
while self.peek().isalnum() or self.is_identifier(self.peek()):
self.step()
kind = TokenType.ID
value = self.source[self.start:self.current]
if self.RESERVED.get(value, None):
kind = self.RESERVED[value]
self.tokens.append(self.create_token(kind))
def comment(self):
"""Handles multi-line comments"""
closed = False
while not self.done():
end = self.peek() + self.peek_next()
if end == "/*": # Nested comments
self.step()
self.step()
self.comment()
elif end == "*/":
closed = True
self.step() # Consume the two ends
self.step()
break
self.step()
if self.done() and not closed:
raise ParseError(f"Unexpected EOF at line {self.line}")
def match(self, char: str) -> bool:
"""
Returns True if the current character in self.source matches
the given character
"""
if self.done():
return False
elif self.source[self.current] != char:
return False
self.current += 1
return True
def done(self) -> bool:
"""
Helper method that's used by the lexer
to know if all source has been consumed
"""
return self.current >= len(self.source)
def create_token(self, kind: TokenType, literal: object = None) -> Token:
"""
Creates and returns a token object
"""
return Token(kind, self.source[self.start:self.current], literal, self.line)
def is_identifier(self, char: str):
"""Returns if a character can be an identifier"""
if char.isalpha() or char in ("_", ): # More coming soon
return True
def scan_token(self):
"""
Scans for a single token and adds it to
self.tokens
"""
char = self.step()
if char in (" ", "\t", "\r"): # Useless characters
return
elif char == "\n": # New line
self.line += 1
elif char in ("'", '"'): # A string literal
self.string(char)
elif char.isdigit():
self.number()
elif self.is_identifier(char): # Identifier or reserved keyword
self.identifier()
elif char in self.TOKENS:
if char == "/" and self.match("/"):
while self.peek() != "\n" and not self.done():
self.step() # Who cares about comments?
elif char == "/" and self.match("*"):
self.comment()
elif char == "=" and self.match("="):
self.tokens.append(self.create_token(TokenType.DEQ))
elif char == ">" and self.match("="):
self.tokens.append(self.create_token(TokenType.GE))
elif char == "<" and self.match("="):
self.tokens.append(self.create_token(TokenType.LE))
elif char == "!" and self.match("="):
self.tokens.append(self.create_token(TokenType.NE))
elif char == "*" and self.match("*"):
self.tokens.append(self.create_token(TokenType.POW))
else:
self.tokens.append(self.create_token(self.TOKENS[char]))
else:
raise ParseError(f"unexpected character '{char}' at line {self.line}")
def lex(self) -> List[Token]:
"""
Performs lexical analysis on self.source
and returns a list of tokens
"""
while not self.done():
self.start = self.current
self.scan_token()
self.tokens.append(Token(TokenType.EOF, "", None, self.line))
return self.tokens
from .meta.tokenobject import Token
from .meta.tokentype import TokenType
from .meta.exceptions import ParseError
from typing import List
class Lexer(object):
"""
A simple tokenizer for the JAPL programming
language, scans a input source file and
produces a list of tokens. Some errors
are caught here as well.
"""
TOKENS = {"(": TokenType.LP, ")": TokenType.RP,
"{": TokenType.LB, "}": TokenType.RB,
".": TokenType.DOT, ",": TokenType.COMMA,
"-": TokenType.MINUS, "+": TokenType.PLUS,
";": TokenType.SEMICOLON, "*": TokenType.STAR,
">": TokenType.GT, "<": TokenType.LT,
"=": TokenType.EQ, "!": TokenType.NEG,
"/": TokenType.SLASH, "%": TokenType.MOD}
RESERVED = {"or": TokenType.OR, "and": TokenType.AND,
"class": TokenType.CLASS, "fun": TokenType.FUN,
"if": TokenType.IF, "else": TokenType.ELSE,
"for": TokenType.FOR, "while": TokenType.WHILE,
"var": TokenType.VAR, "nil": TokenType.NIL,
"true": TokenType.TRUE, "false": TokenType.FALSE,
"return": TokenType.RETURN,
"this": TokenType.THIS, "super": TokenType.SUPER,
"del": TokenType.DEL, "break": TokenType.BREAK}
def __init__(self, source: str):
"""Object constructor"""
self.source = source
self.tokens: List[Token] = []
self.line: int = 1 # Points to the line being lexed
self.start: int = 0 # The position of the first character of the current lexeme
self.current: int = 0 # The position of the current character being lexed
def step(self) -> str:
"""
'Steps' one character in the source code and returns it
"""
if self.done():
return ""
self.current += 1
return self.source[self.current - 1]
def peek(self) -> str:
"""
Returns the current character without consuming it
or an empty string if all text has been consumed
"""
if self.done():
return ""
return self.source[self.current]
def peek_next(self) -> str:
"""
Returns the next character after self.current
or an empty string if the input has been consumed
"""
if self.current + 1 >= len(self.source):
return ""
return self.source[self.current + 1]
def string(self, delimiter: str):
"""Parses a string literal"""
while self.peek() != delimiter and not self.done():
if self.peek() == "\n":
self.line += 1
self.step()
if self.done():
raise ParseError(f"unterminated string literal at line {self.line}")
self.step() # Consume the '"'
value = self.source[self.start + 1:self.current - 1] # Get the actual string
self.tokens.append(self.create_token(TokenType.STR, value))
def number(self):
"""Parses a number literal"""
convert = int
while self.peek().isdigit():
self.step()
if self.peek() == ".":
self.step() # Consume the "."
while self.peek().isdigit():
self.step()
convert = float
self.tokens.append(self.create_token(TokenType.NUM,
convert(self.source[self.start:self.current])))
def identifier(self):
"""Parses identifiers and reserved keywords"""
while self.peek().isalnum() or self.is_identifier(self.peek()):
self.step()
kind = TokenType.ID
value = self.source[self.start:self.current]
if self.RESERVED.get(value, None):
kind = self.RESERVED[value]
self.tokens.append(self.create_token(kind))
def comment(self):
"""Handles multi-line comments"""
closed = False
while not self.done():
end = self.peek() + self.peek_next()
if end == "/*": # Nested comments
self.step()
self.step()
self.comment()
elif end == "*/":
closed = True
self.step() # Consume the two ends
self.step()
break
self.step()
if self.done() and not closed:
raise ParseError(f"Unexpected EOF at line {self.line}")
def match(self, char: str) -> bool:
"""
Returns True if the current character in self.source matches
the given character
"""
if self.done():
return False
elif self.source[self.current] != char:
return False
self.current += 1
return True
def done(self) -> bool:
"""
Helper method that's used by the lexer
to know if all source has been consumed
"""
return self.current >= len(self.source)
def create_token(self, kind: TokenType, literal: object = None) -> Token:
"""
Creates and returns a token object
"""
return Token(kind, self.source[self.start:self.current], literal, self.line)
def is_identifier(self, char: str):
"""Returns if a character can be an identifier"""
if char.isalpha() or char in ("_", ): # More coming soon
return True
def scan_token(self):
"""
Scans for a single token and adds it to
self.tokens
"""
char = self.step()
if char in (" ", "\t", "\r"): # Useless characters
return
elif char == "\n": # New line
self.line += 1
elif char in ("'", '"'): # A string literal
self.string(char)
elif char.isdigit():
self.number()
elif self.is_identifier(char): # Identifier or reserved keyword
self.identifier()
elif char in self.TOKENS:
if char == "/" and self.match("/"):
while self.peek() != "\n" and not self.done():
self.step() # Who cares about comments?
elif char == "/" and self.match("*"):
self.comment()
elif char == "=" and self.match("="):
self.tokens.append(self.create_token(TokenType.DEQ))
elif char == ">" and self.match("="):
self.tokens.append(self.create_token(TokenType.GE))
elif char == "<" and self.match("="):
self.tokens.append(self.create_token(TokenType.LE))
elif char == "!" and self.match("="):
self.tokens.append(self.create_token(TokenType.NE))
elif char == "*" and self.match("*"):
self.tokens.append(self.create_token(TokenType.POW))
else:
self.tokens.append(self.create_token(self.TOKENS[char]))
else:
raise ParseError(f"unexpected character '{char}' at line {self.line}")
def lex(self) -> List[Token]:
"""
Performs lexical analysis on self.source
and returns a list of tokens
"""
while not self.done():
self.start = self.current
self.scan_token()
self.tokens.append(Token(TokenType.EOF, "", None, self.line))
return self.tokens

0
JAPL/meta/__init__.py Normal file
View File

View File

@ -1,7 +1,7 @@
from enum import Enum, auto
class ClassType(Enum):
NONE = auto()
CLASS = auto()
from enum import Enum, auto
class ClassType(Enum):
NONE = auto()
CLASS = auto()

View File

@ -1,71 +1,71 @@
from .exceptions import JAPLError
from .tokenobject import Token
from .expression import Variable
class Environment(object):
"""
A wrapper around a hashmap representing
a scope
"""
def __init__(self, enclosing=None):
"""Object constructor"""
self.map = {}
self.enclosing = enclosing
def define(self, name: str, attr: object):
"""Defines a new variable in the scope"""
self.map[name] = attr
def get(self, name: Token):
"""Gets a variable"""
if name.lexeme in self.map:
return self.map[name.lexeme]
elif self.enclosing:
return self.enclosing.get(name)
raise JAPLError(name, f"Undefined name '{name.lexeme}'")
def get_at(self, distance, name):
"""Gets a variable in a specific scope"""
return self.ancestor(distance).map.get(name)
def ancestor(self, distance):
"""Finds the scope specified by distance"""
env = self
for _ in range(distance):
env = env.enclosing
return env
def assign_at(self, distance, name, value):
"""Same as get_at, but assigns instead of retrieving"""
self.ancestor(distance).map[name.lexeme] = value
def delete(self, var):
"""Deletes a variable"""
if var.name.lexeme in self.map:
del self.map[var.name.lexeme]
elif self.enclosing:
self.enclosing.delete(var)
else:
raise JAPLError(var.name, f"Undefined name '{var.name.lexeme}'")
def assign(self, name: Token, value: object):
"""Assigns a variable"""
if name.lexeme in self.map:
if isinstance(value, Variable):
self.map[name.lexeme] = self.get(value.name)
else:
self.map[name.lexeme] = value
elif self.enclosing:
self.enclosing.assign(name, value)
else:
raise JAPLError(name, f"Undefined name '{name.lexeme}'")
from .exceptions import JAPLError
from .tokenobject import Token
from .expression import Variable
class Environment(object):
"""
A wrapper around a hashmap representing
a scope
"""
def __init__(self, enclosing=None):
"""Object constructor"""
self.map = {}
self.enclosing = enclosing
def define(self, name: str, attr: object):
"""Defines a new variable in the scope"""
self.map[name] = attr
def get(self, name: Token):
"""Gets a variable"""
if name.lexeme in self.map:
return self.map[name.lexeme]
elif self.enclosing:
return self.enclosing.get(name)
raise JAPLError(name, f"Undefined name '{name.lexeme}'")
def get_at(self, distance, name):
"""Gets a variable in a specific scope"""
return self.ancestor(distance).map.get(name)
def ancestor(self, distance):
"""Finds the scope specified by distance"""
env = self
for _ in range(distance):
env = env.enclosing
return env
def assign_at(self, distance, name, value):
"""Same as get_at, but assigns instead of retrieving"""
self.ancestor(distance).map[name.lexeme] = value
def delete(self, var):
"""Deletes a variable"""
if var.name.lexeme in self.map:
del self.map[var.name.lexeme]
elif self.enclosing:
self.enclosing.delete(var)
else:
raise JAPLError(var.name, f"Undefined name '{var.name.lexeme}'")
def assign(self, name: Token, value: object):
"""Assigns a variable"""
if name.lexeme in self.map:
if isinstance(value, Variable):
self.map[name.lexeme] = self.get(value.name)
else:
self.map[name.lexeme] = value
elif self.enclosing:
self.enclosing.assign(name, value)
else:
raise JAPLError(name, f"Undefined name '{name.lexeme}'")

View File

@ -1,32 +1,32 @@
from .tokentype import TokenType
class JAPLError(BaseException):
"""JAPL's exceptions base class"""
def __repr__(self):
return self.args[1]
class ParseError(JAPLError):
"""An error occurred while parsing"""
def __repr__(self):
if len(self.args) > 1:
message, token = self.args
if token.kind == TokenType.EOF:
return f"Unexpected error while parsing at line {token.line}, at end: {message}"
else:
return f"Unexpected error while parsing at line {token.line} at '{token.lexeme}': {message}"
return self.args[0]
def __str__(self):
return self.__repr__()
class BreakException(JAPLError):
"""Notifies a loop that it's time to break"""
class ReturnException(JAPLError):
"""Notifies a function that it's time to return"""
from .tokentype import TokenType
class JAPLError(BaseException):
"""JAPL's exceptions base class"""
def __repr__(self):
return self.args[1]
class ParseError(JAPLError):
"""An error occurred while parsing"""
def __repr__(self):
if len(self.args) > 1:
message, token = self.args
if token.kind == TokenType.EOF:
return f"Unexpected error while parsing at line {token.line}, at end: {message}"
else:
return f"Unexpected error while parsing at line {token.line} at '{token.lexeme}': {message}"
return self.args[0]
def __str__(self):
return self.__repr__()
class BreakException(JAPLError):
"""Notifies a loop that it's time to break"""
class ReturnException(JAPLError):
"""Notifies a function that it's time to return"""

View File

@ -1,167 +1,167 @@
from dataclasses import dataclass
from abc import ABC, abstractmethod
from .tokenobject import Token
from typing import List
class Expression(object):
"""
An object representing a JAPL expression.
This class is not meant to be instantiated directly,
inherit from it instead!
"""
def accept(self, visitor):
raise NotImplementedError
class Visitor(ABC):
"""
Visitor abstract base class to implement
the Visitor pattern
"""
@abstractmethod
def visit_literal(self, visitor):
raise NotImplementedError
@abstractmethod
def visit_binary(self, visitor):
raise NotImplementedError
@abstractmethod
def visit_grouping(self, visitor):
raise NotImplementedError
@abstractmethod
def visit_unary(self, visitor):
raise NotImplementedError
@staticmethod
def visit_get(self, visitor):
raise NotImplementedError
@staticmethod
def visit_set(self, visitor):
raise NotImplementedError
@dataclass
class Binary(Expression):
left: Expression
operator: Token
right: Expression
def accept(self, visitor):
return visitor.visit_binary(self)
@dataclass
class Unary(Expression):
operator: Token
right: Expression
def accept(self, visitor):
return visitor.visit_unary(self)
@dataclass
class Literal(Expression):
value: object
def accept(self, visitor):
return visitor.visit_literal(self)
@dataclass
class Grouping(Expression):
expr: Expression
def accept(self, visitor):
return visitor.visit_grouping(self)
@dataclass
class Variable(Expression):
name: Token
def accept(self, visitor):
return visitor.visit_var_expr(self)
def __hash__(self):
return super().__hash__()
@dataclass
class Assignment(Expression):
name: Token
value: Expression
def accept(self, visitor):
return visitor.visit_assign(self)
def __hash__(self):
return super().__hash__()
@dataclass
class Logical(Expression):
left: Expression
operator: Token
right: Expression
def accept(self, visitor):
return visitor.visit_logical(self)
@dataclass
class Call(Expression):
callee: Expression
paren: Token
arguments: List[Expression] = ()
def accept(self, visitor):
return visitor.visit_call_expr(self)
@dataclass
class Get(Expression):
object: Expression
name: Token
def accept(self, visitor):
return visitor.visit_get(self)
@dataclass
class Set(Expression):
object: Expression
name: Token
value: Expression
def accept(self, visitor):
return visitor.visit_set(self)
@dataclass
class This(Expression):
keyword: Token
def accept(self, visitor):
return visitor.visit_this(self)
def __hash__(self):
return super().__hash__()
@dataclass
class Super(Expression):
keyword: Token
method: Token
def accept(self, visitor):
return visitor.visit_super(self)
def __hash__(self):
return super().__hash__()
from dataclasses import dataclass
from abc import ABC, abstractmethod
from .tokenobject import Token
from typing import List
class Expression(object):
"""
An object representing a JAPL expression.
This class is not meant to be instantiated directly,
inherit from it instead!
"""
def accept(self, visitor):
raise NotImplementedError
class Visitor(ABC):
"""
Visitor abstract base class to implement
the Visitor pattern
"""
@abstractmethod
def visit_literal(self, visitor):
raise NotImplementedError
@abstractmethod
def visit_binary(self, visitor):
raise NotImplementedError
@abstractmethod
def visit_grouping(self, visitor):
raise NotImplementedError
@abstractmethod
def visit_unary(self, visitor):
raise NotImplementedError
@staticmethod
def visit_get(self, visitor):
raise NotImplementedError
@staticmethod
def visit_set(self, visitor):
raise NotImplementedError
@dataclass
class Binary(Expression):
left: Expression
operator: Token
right: Expression
def accept(self, visitor):
return visitor.visit_binary(self)
@dataclass
class Unary(Expression):
operator: Token
right: Expression
def accept(self, visitor):
return visitor.visit_unary(self)
@dataclass
class Literal(Expression):
value: object
def accept(self, visitor):
return visitor.visit_literal(self)
@dataclass
class Grouping(Expression):
expr: Expression
def accept(self, visitor):
return visitor.visit_grouping(self)
@dataclass
class Variable(Expression):
name: Token
def accept(self, visitor):
return visitor.visit_var_expr(self)
def __hash__(self):
return super().__hash__()
@dataclass
class Assignment(Expression):
name: Token
value: Expression
def accept(self, visitor):
return visitor.visit_assign(self)
def __hash__(self):
return super().__hash__()
@dataclass
class Logical(Expression):
left: Expression
operator: Token
right: Expression
def accept(self, visitor):
return visitor.visit_logical(self)
@dataclass
class Call(Expression):
callee: Expression
paren: Token
arguments: List[Expression] = ()
def accept(self, visitor):
return visitor.visit_call_expr(self)
@dataclass
class Get(Expression):
object: Expression
name: Token
def accept(self, visitor):
return visitor.visit_get(self)
@dataclass
class Set(Expression):
object: Expression
name: Token
value: Expression
def accept(self, visitor):
return visitor.visit_set(self)
@dataclass
class This(Expression):
keyword: Token
def accept(self, visitor):
return visitor.visit_this(self)
def __hash__(self):
return super().__hash__()
@dataclass
class Super(Expression):
keyword: Token
method: Token
def accept(self, visitor):
return visitor.visit_super(self)
def __hash__(self):
return super().__hash__()

View File

@ -1,8 +1,8 @@
from enum import Enum, auto
class FunctionType(Enum):
NONE = auto()
FUNCTION = auto()
METHOD = auto()
INIT = auto()
from enum import Enum, auto
class FunctionType(Enum):
NONE = auto()
FUNCTION = auto()
METHOD = auto()
INIT = auto()

View File

@ -1,7 +1,7 @@
from enum import Enum, auto
class LoopType(Enum):
NONE = auto()
WHILE = auto()
from enum import Enum, auto
class LoopType(Enum):
NONE = auto()
WHILE = auto()

View File

@ -1,173 +1,173 @@
from abc import ABC, abstractmethod
from dataclasses import dataclass
from .expression import Expression, Variable
from .tokenobject import Token
from typing import List, Any
class Statement(object):
"""
A Base Class representing JAPL statements
"""
def accept(self, visitor):
raise NotImplementedError
class Visitor(ABC):
"""Wrapper to implement the Visitor Pattern"""
@abstractmethod
def visit_statement_expr(self, visitor):
raise NotImplementedError
@abstractmethod
def visit_var_stmt(self, visitor):
raise NotImplementedError
@abstractmethod
def visit_del(self, visitor):
raise NotImplementedError
@abstractmethod
def visit_block(self, visitor):
raise NotImplementedError
@abstractmethod
def visit_if(self, visitor):
raise NotImplementedError
@abstractmethod
def visit_while(self, visitor):
raise NotImplementedError
@abstractmethod
def visit_break(self, visitor):
raise NotImplementedError
@abstractmethod
def visit_function(self, visitor):
raise NotImplementedError
@abstractmethod
def visit_return(self, visitor):
raise NotImplementedError
@staticmethod
def visit_class(self, visitor):
raise NotImplementedError
@dataclass
class StatementExpr(Statement):
"""
An expression statement
"""
expression: Expression
def accept(self, visitor):
visitor.visit_statement_expr(self)
@dataclass
class Var(Statement):
"""
A var statement
"""
name: Token
init: Expression = None
def accept(self, visitor):
visitor.visit_var_stmt(self)
@dataclass
class Del(Statement):
"""
A del statement
"""
name: Any
def accept(self, visitor):
visitor.visit_del(self)
@dataclass
class Block(Statement):
"""A block statement"""
statements: List[Statement]
def accept(self, visitor):
visitor.visit_block(self)
@dataclass
class If(Statement):
"""An if statement"""
condition: Expression
then_branch: Statement
else_branch: Statement
def accept(self, visitor):
visitor.visit_if(self)
@dataclass
class While(Statement):
"""A while statement"""
condition: Expression
body: Statement
def accept(self, visitor):
visitor.visit_while(self)
@dataclass
class Break(Statement):
"""A break statement"""
token: Token
def accept(self, visitor):
visitor.visit_break(self)
@dataclass
class Function(Statement):
"""A function statement"""
name: Token
params: List[Token]
body: List[Statement]
def accept(self, visitor):
visitor.visit_function(self)
@dataclass
class Return(Statement, BaseException):
"""A return statement"""
keyword: Token
value: Expression
def accept(self, visitor):
visitor.visit_return(self)
@dataclass
class Class(Statement):
"""A class statement"""
name: Token
methods: list
superclass: Variable
def accept(self, visitor):
visitor.visit_class(self)
from abc import ABC, abstractmethod
from dataclasses import dataclass
from .expression import Expression, Variable
from .tokenobject import Token
from typing import List, Any
class Statement(object):
"""
A Base Class representing JAPL statements
"""
def accept(self, visitor):
raise NotImplementedError
class Visitor(ABC):
"""Wrapper to implement the Visitor Pattern"""
@abstractmethod
def visit_statement_expr(self, visitor):
raise NotImplementedError
@abstractmethod
def visit_var_stmt(self, visitor):
raise NotImplementedError
@abstractmethod
def visit_del(self, visitor):
raise NotImplementedError
@abstractmethod
def visit_block(self, visitor):
raise NotImplementedError
@abstractmethod
def visit_if(self, visitor):
raise NotImplementedError
@abstractmethod
def visit_while(self, visitor):
raise NotImplementedError
@abstractmethod
def visit_break(self, visitor):
raise NotImplementedError
@abstractmethod
def visit_function(self, visitor):
raise NotImplementedError
@abstractmethod
def visit_return(self, visitor):
raise NotImplementedError
@staticmethod
def visit_class(self, visitor):
raise NotImplementedError
@dataclass
class StatementExpr(Statement):
"""
An expression statement
"""
expression: Expression
def accept(self, visitor):
visitor.visit_statement_expr(self)
@dataclass
class Var(Statement):
"""
A var statement
"""
name: Token
init: Expression = None
def accept(self, visitor):
visitor.visit_var_stmt(self)
@dataclass
class Del(Statement):
"""
A del statement
"""
name: Any
def accept(self, visitor):
visitor.visit_del(self)
@dataclass
class Block(Statement):
"""A block statement"""
statements: List[Statement]
def accept(self, visitor):
visitor.visit_block(self)
@dataclass
class If(Statement):
"""An if statement"""
condition: Expression
then_branch: Statement
else_branch: Statement
def accept(self, visitor):
visitor.visit_if(self)
@dataclass
class While(Statement):
"""A while statement"""
condition: Expression
body: Statement
def accept(self, visitor):
visitor.visit_while(self)
@dataclass
class Break(Statement):
"""A break statement"""
token: Token
def accept(self, visitor):
visitor.visit_break(self)
@dataclass
class Function(Statement):
"""A function statement"""
name: Token
params: List[Token]
body: List[Statement]
def accept(self, visitor):
visitor.visit_function(self)
@dataclass
class Return(Statement, BaseException):
"""A return statement"""
keyword: Token
value: Expression
def accept(self, visitor):
visitor.visit_return(self)
@dataclass
class Class(Statement):
"""A class statement"""
name: Token
methods: list
superclass: Variable
def accept(self, visitor):
visitor.visit_class(self)

View File

@ -1,13 +1,13 @@
from dataclasses import dataclass
from .tokentype import TokenType
@dataclass
class Token(object):
"""The representation of a JAPL token"""
kind: TokenType
lexeme: str
literal: object
line: int
from dataclasses import dataclass
from .tokentype import TokenType
@dataclass
class Token(object):
"""The representation of a JAPL token"""
kind: TokenType
lexeme: str
literal: object
line: int

View File

@ -1,55 +1,55 @@
from enum import Enum, auto
class TokenType(Enum):
"""
An enumeration for all JAPL types
"""
LP = auto()
RP = auto()
LB = auto()
RB = auto()
COMMA = auto()
DOT = auto()
PLUS = auto()
MINUS = auto()
SLASH = auto()
SEMICOLON = auto()
STAR = auto()
NEG = auto()
NE = auto()
EQ = auto()
DEQ = auto()
GT = auto()
LT = auto()
GE = auto()
LE = auto()
MOD = auto()
POW = auto()
ID = auto()
STR = auto()
NUM = auto()
AND = auto()
CLASS = auto()
ELSE = auto()
FOR = auto()
FUN = auto()
FALSE = auto()
IF = auto()
NIL = auto()
OR = auto()
RETURN = auto()
SUPER = auto()
THIS = auto()
TRUE = auto()
VAR = auto()
WHILE = auto()
DEL = auto()
BREAK = auto()
EOF = auto()
from enum import Enum, auto
class TokenType(Enum):
"""
An enumeration for all JAPL types
"""
LP = auto()
RP = auto()
LB = auto()
RB = auto()
COMMA = auto()
DOT = auto()
PLUS = auto()
MINUS = auto()
SLASH = auto()
SEMICOLON = auto()
STAR = auto()
NEG = auto()
NE = auto()
EQ = auto()
DEQ = auto()
GT = auto()
LT = auto()
GE = auto()
LE = auto()
MOD = auto()
POW = auto()
ID = auto()
STR = auto()
NUM = auto()
AND = auto()
CLASS = auto()
ELSE = auto()
FOR = auto()
FUN = auto()
FALSE = auto()
IF = auto()
NIL = auto()
OR = auto()
RETURN = auto()
SUPER = auto()
THIS = auto()
TRUE = auto()
VAR = auto()
WHILE = auto()
DEL = auto()
BREAK = auto()
EOF = auto()

444
JAPL/parser.py Normal file
View File

@ -0,0 +1,444 @@
from .meta.exceptions import ParseError
from .meta.tokentype import TokenType
from .meta.tokenobject import Token
from typing import List, Union
from .meta.expression import Variable, Assignment, Logical, Call, Binary, Unary, Literal, Grouping, Expression, Get, Set, This, Super
from .meta.statement import StatementExpr, Var, Del, Block, If, While, Break, Function, Return, Class
class Parser(object):
"""A simple recursive-descent top-down parser"""
def __init__(self, tokens: List[Token]):
"""Object constructor"""
self.tokens = tokens
self.current: int = 0
def check(self, token_type):
"""
Helper method for self.match
"""
if self.done():
return False
elif self.peek().kind == token_type:
return True
return False
def throw(self, token: Token, message: str) -> ParseError:
"""Returns ParseError with the given message"""
return ParseError(token, message)
def synchronize(self):
"""Synchronizes the parser's state to recover after
an error occurred while parsing"""
self.step()
while not self.done():
if self.previous().kind == TokenType.SEMICOLON:
break
else:
token_type = self.peek().kind
if token_type in (
TokenType.IF, TokenType.CLASS, TokenType.VAR, TokenType.FOR, TokenType.WHILE,
TokenType.RETURN, TokenType.FUN
):
return
self.step()
def peek(self):
"""
Returns a token without consuming it
"""
return self.tokens[self.current]
def previous(self):
"""
Returns the most recently consumed token
"""
return self.tokens[self.current - 1]
def done(self):
"""
Returns True if we reached EOF
"""
return self.peek().kind == TokenType.EOF
def match(self, *types: Union[TokenType, List[TokenType]]):
"""
Checks if the current token matches
any of the given token type(s)
"""
for token_type in types:
if self.check(token_type):
self.step()
return True
return False
def consume(self, token_type, message: str):
"""
Consumes a token, raises an error
with the given message if the current token
differs from the expected one
"""
if self.check(token_type):
return self.step()
raise self.throw(self.peek(), message)
def primary(self):
"""Parses unary expressions (literals)"""
if self.match(TokenType.FALSE):
return Literal(False)
elif self.match(TokenType.TRUE):
return Literal(True)
elif self.match(TokenType.NIL):
return Literal(None)
elif self.match(TokenType.NUM, TokenType.STR):
return Literal(self.previous().literal)
elif self.match(TokenType.LP):
expr: Expression = self.expression()
self.consume(TokenType.RP, "Unexpected error while parsing parenthesized expression")
return Grouping(expr)
elif self.match(TokenType.ID):
return Variable(self.previous())
elif self.match(TokenType.SUPER):
keyword = self.previous()
self.consume(TokenType.DOT, "Expecting '.' after 'super'")
method = self.consume(TokenType.ID, "Expecting superclass method name")
return Super(keyword, method)
elif self.match(TokenType.THIS):
return This(self.previous())
raise self.throw(self.peek(), "Invalid syntax")
def finish_call(self, callee):
"""Parses a function call"""
arguments = []
if not self.check(TokenType.RP):
while True:
if len(arguments) >= 255:
raise self.throw(self.peek(), "Cannot have more than 255 arguments")
arguments.append(self.expression())
if not self.match(TokenType.COMMA):
break
paren = self.consume(TokenType.RP, "Unexpected error while parsing call")
return Call(callee, paren, arguments)
def call(self):
"""Parses call expressions"""
expr = self.primary()
while True:
if self.match(TokenType.LP):
expr = self.finish_call(expr)
elif self.match(TokenType.DOT):
name = self.consume(TokenType.ID, "Expecting property after '.'")
expr = Get(expr, name)
else:
break
return expr
def unary(self):
"""Parses unary expressions"""
if self.match(TokenType.NEG, TokenType.MINUS):
operator: Token = self.previous()
right: Expression = self.unary()
return Unary(operator, right)
return self.call()
def pow(self):
"""Parses pow expressions"""
expr: Expression = self.unary()
while self.match(TokenType.POW):
operator: Token = self.previous()
right: Expression = self.unary()
expr = Binary(expr, operator, right)
return expr
def multiplication(self):
"""
Parses multiplications and divisions
"""
expr: Expression = self.pow()
while self.match(TokenType.STAR, TokenType.SLASH, TokenType.MOD):
operator: Token = self.previous()
right: Expression = self.pow()
expr = Binary(expr, operator, right)
return expr
def addition(self):
"""
Parses additions and subtractions
"""
expr: Expression = self.multiplication()
while self.match(TokenType.PLUS, TokenType.MINUS):
operator: Token = self.previous()
right: Expression = self.multiplication()
expr = Binary(expr, operator, right)
return expr
def comparison(self):
"""
Parses comparison expressions
"""
expr: Expression = self.addition()
while self.match(TokenType.GT, TokenType.GE, TokenType.LT, TokenType.LE, TokenType.NE):
operator: Token = self.previous()
right: Expression = self.addition()
expr = Binary(expr, operator, right)
return expr
def equality(self):
"""
Parses equality expressions
"""
expr: Expression = self.comparison()
while self.match(TokenType.NEG, TokenType.DEQ):
operator: Token = self.previous()
right: Expression = self.comparison()
expr = Binary(expr, operator, right)
return expr
def logical_and(self):
"""Parses a logical and expression"""
expr = self.equality()
while self.match(TokenType.AND):
operator = self.previous()
right = self.equality()
expr = Logical(expr, operator, right)
return expr
def logical_or(self):
"""Parses a logical or expression"""
expr = self.logical_and()
while self.match(TokenType.OR):
operator = self.previous()
right = self.logical_and()
expr = Logical(expr, operator, right)
return expr
def assignment(self):
"""
Parses an assignment expression
"""
expr = self.logical_or()
if self.match(TokenType.EQ):
eq = self.previous()
value = self.assignment()
if isinstance(expr, Variable):
name = expr.name
return Assignment(name, value)
elif isinstance(expr, Get):
return Set(expr.object, expr.name, value)
raise self.throw(eq, "Invalid syntax")
return expr
def expression(self):
"""
Parses an expression
"""
return self.assignment()
def step(self):
"""Steps 1 token forward"""
if not self.done():
self.current += 1
return self.previous()
def del_statement(self):
"""Returns a del AST node"""
value = self.expression()
self.consume(TokenType.SEMICOLON, "Missing semicolon after statement")
return Del(value)
def expression_statement(self):
"""Returns a StatemenrExpr AST node"""
value = self.expression()
self.consume(TokenType.SEMICOLON, "Missing semicolon after statement")
return StatementExpr(value)
def block(self):
"""Returns a new environment to enable block scoping"""
statements = []
while not self.check(TokenType.RB) and not self.done():
statements.append(self.declaration())
self.consume(TokenType.RB, "Unexpected end of block")
return statements
def if_statement(self):
"""Parses an IF statement"""
self.consume(TokenType.LP, "The if condition must be parenthesized")
cond = self.expression()
self.consume(TokenType.RP, "The if condition must be parenthesized")
then_branch = self.statement()
else_branch = None
if self.match(TokenType.ELSE):
else_branch = self.statement()
return If(cond, then_branch, else_branch)
def while_statement(self):
"""Parses a while statement"""
self.consume(TokenType.LP, "The while condition must be parenthesized")
cond = self.expression()
self.consume(TokenType.RP, "The while condition must be parenthesized")
body = self.statement()
return While(cond, body)
def for_statement(self):
"""Parses a for statement"""
self.consume(TokenType.LP, "The for condition must be parenthesized")
if self.match(TokenType.SEMICOLON):
init = None
elif self.match(TokenType.VAR):
init = self.var_declaration()
else:
init = self.expression_statement()
condition = None
if not self.check(TokenType.SEMICOLON):
condition = self.expression()
self.consume(TokenType.SEMICOLON, "Missing semicolon after loop condition")
incr = None
if not self.check(TokenType.RP):
incr = self.expression()
self.consume(TokenType.RP, "The for condition must be parenthesized")
body = self.statement()
if incr:
body = Block([body, StatementExpr(incr)])
if not condition:
condition = Literal(True)
body = While(condition, body)
if init:
body = Block([init, body])
return body
def break_statement(self):
"""Parses a break statement"""
if self.check(TokenType.SEMICOLON):
return self.step()
raise ParseError(self.peek(), "Invalid syntax")
def return_statement(self):
"""Parses a return statement"""
keyword = self.previous()
value = None
if not self.check(TokenType.SEMICOLON):
value = self.expression()
self.consume(TokenType.SEMICOLON, "Missing semicolon after statement")
return Return(keyword, value)
def statement(self):
"""Parses a statement"""
if self.match(TokenType.IF):
return self.if_statement()
elif self.match(TokenType.RETURN):
return self.return_statement()
elif self.match(TokenType.FOR):
return self.for_statement()
elif self.match(TokenType.WHILE):
return self.while_statement()
elif self.match(TokenType.BREAK):
return Break(self.break_statement())
elif self.match(TokenType.LB):
return Block(self.block())
elif self.match(TokenType.DEL):
return self.del_statement()
return self.expression_statement()
def var_declaration(self):
"""Parses a var declaration"""
name = self.consume(TokenType.ID, "Expecting a variable name")
init = None
if self.match(TokenType.EQ):
init = self.expression()
self.consume(TokenType.SEMICOLON, "Missing semicolon after declaration")
return Var(name, init)
def function(self, kind: str):
"""Parses a function declaration"""
name = self.consume(TokenType.ID, f"Expecting {kind} name")
self.consume(TokenType.LP, f"Expecting parenthesis after {kind} name")
parameters = []
if not self.check(TokenType.RP):
while True:
if len(parameters) >= 255:
raise self.throw(self.peek(), "Cannot have more than 255 arguments")
parameter = self.consume(TokenType.ID, "Expecting parameter name")
if parameter in parameters:
raise self.throw(self.peek(), "Multiple parameters with the same name in function declaration are not allowed")
parameters.append(parameter)
if not self.match(TokenType.COMMA):
break
self.consume(TokenType.RP, "Unexpected error while parsing function declaration")
self.consume(TokenType.LB, f"Expecting '{{' before {kind} body")
body = self.block()
return Function(name, parameters, body)
def class_declaration(self):
"""Parses a class declaration"""
name = self.consume(TokenType.ID, "Expecting class name")
superclass = None
if self.match(TokenType.LT):
self.consume(TokenType.ID, "Expecting superclass name")
superclass = Variable(self.previous())
self.consume(TokenType.LB, "Expecting '{' before class body")
methods = []
while not self.check(TokenType.RB) and not self.done():
methods.append(self.function("method"))
self.consume(TokenType.RB, "Expecting '}' after class body")
return Class(name, methods, superclass)
def declaration(self):
"""Parses a declaration"""
try:
if self.match(TokenType.CLASS):
return self.class_declaration()
elif self.match(TokenType.FUN):
return self.function("function")
elif self.match(TokenType.VAR):
return self.var_declaration()
return self.statement()
except ParseError:
self.synchronize()
raise
def parse(self):
"""
Starts to parse
"""
statements = []
while not self.done():
statements.append(self.declaration())
return statements

281
JAPL/resolver.py Normal file
View File

@ -0,0 +1,281 @@
from .meta.exceptions import JAPLError
from .meta.expression import Expression
from .meta.statement import Statement
from .meta.functiontype import FunctionType
from .meta.classtype import ClassType
from .meta.looptype import LoopType
try:
from functools import singledispatchmethod
except ImportError:
from singledispatchmethod import singledispatchmethod # Backport
from typing import List, Union
from collections import deque
class Resolver(Expression.Visitor, Statement.Visitor):
"""
This class serves the purpose of correctly resolving
name bindings (even with closures) efficiently
"""
def __init__(self, interpreter):
"""
Object constructor
"""
self.interpreter = interpreter
self.scopes = deque()
self.current_function = FunctionType.NONE
self.current_loop = LoopType.NONE
self.current_class = ClassType.NONE
@singledispatchmethod
def resolve(self, stmt_or_expr: Union[Statement, Expression, List[Statement]]):
"""Generic method to dispatch statements/expressions"""
raise NotImplementedError
def begin_scope(self):
"""
Opens a new scope
"""
self.scopes.append({})
def end_scope(self):
"""
Ends a scope
"""
self.scopes.pop()
@resolve.register
def resolve_statement(self, stmt: Statement):
"""
Resolves names for the given group
of statements
"""
stmt.accept(self)
@resolve.register
def resolve_expression(self, expression: Expression):
"""
Resolves an expression
"""
return expression.accept(self)
@resolve.register
def resolve_statements(self, stmt: list):
"""Resolves multiple statements"""
for statement in stmt:
self.resolve(statement)
def declare(self, name):
"""
Declares a new variable
"""
if not self.scopes:
return
scope = self.scopes[-1]
if name.lexeme in scope:
raise JAPLError(name, "Cannot re-declare the same variable in local scope, use assignment instead")
scope[name.lexeme] = False
def define(self, name):
"""
Defines a new variable
"""
if not self.scopes:
return
scope = self.scopes[-1]
scope[name.lexeme] = True
def visit_block(self, block):
"""Starts name resolution on a given block"""
self.begin_scope()
self.resolve(block.statements)
self.end_scope()
def visit_var_stmt(self, stmt):
"""Visits a var statement node"""
self.declare(stmt.name)
if stmt.init:
self.resolve(stmt.init)
self.define(stmt.name)
def visit_var_expr(self, expr):
"""Visits a var expression node"""
if self.scopes and self.scopes[-1].get(expr.name.lexeme) is False:
raise JAPLError(expr.name, f"Cannot read local variable in its own initializer")
self.resolve_local(expr, expr.name)
def resolve_local(self, expr, name):
"""Resolves local variables"""
i = 0
for scope in reversed(self.scopes):
if name.lexeme in scope:
self.interpreter.resolve(expr, i)
i += 1
def resolve_function(self, function, function_type: FunctionType):
"""Resolves function objects"""
enclosing = self.current_function
self.current_function = function_type
self.begin_scope()
for param in function.params:
self.declare(param)
self.define(param)
self.resolve(function.body)
self.end_scope()
self.current_function = enclosing
def visit_assign(self, expr):
"""Visits an assignment expression"""
self.resolve(expr.value)
self.resolve_local(expr, expr.name)
def visit_function(self, stmt):
"""Visits a function statement"""
self.declare(stmt.name)
self.define(stmt.name)
self.resolve_function(stmt, FunctionType.FUNCTION)
def visit_class(self, stmt):
"""Visits a class statement"""
enclosing = self.current_class
self.current_class = ClassType.CLASS
self.declare(stmt.name)
self.define(stmt.name)
if stmt.superclass:
if stmt.superclass.name.lexeme == stmt.name.lexeme:
raise JAPLError(stmt.name, "A class cannot inherit from itself")
self.resolve(stmt.superclass)
self.begin_scope()
self.scopes[-1]["super"] = True
self.begin_scope()
self.scopes[-1]["this"] = True
for method in stmt.methods:
ftype = FunctionType.METHOD
if method.name.lexeme == "init":
ftype = FunctionType.INIT
self.resolve_function(method, ftype)
self.end_scope()
if stmt.superclass:
self.end_scope()
self.current_class = enclosing
def visit_statement_expr(self, stmt):
"""Visits a statement expression node"""
self.resolve(stmt.expression)
def visit_if(self, stmt):
"""Visits an if statement node"""
self.resolve(stmt.condition)
self.resolve(stmt.then_branch)
if stmt.else_branch:
self.resolve(stmt.else_branch)
def visit_return(self, stmt):
"""Visits a return statement node"""
if self.current_function == FunctionType.NONE:
raise JAPLError(stmt.keyword, "'return' outside function")
elif self.current_function == FunctionType.INIT:
raise JAPLError(stmt.keyword, "Cannot explicitly return from constructor")
elif stmt.value is not None:
self.resolve(stmt.value)
def visit_while(self, stmt):
"""Visits a while statement node"""
loop = self.current_loop
self.current_loop = LoopType.WHILE
self.resolve(stmt.condition)
self.resolve(stmt.body)
self.current_loop = loop
def visit_binary(self, expr):
"""Visits a binary expression node"""
self.resolve(expr.left)
self.resolve(expr.right)
def visit_call_expr(self, expr):
"""Visits a call expression node"""
self.resolve(expr.callee)
for argument in expr.arguments:
self.resolve(argument)
def visit_grouping(self, expr):
"""Visits a grouping expression"""
self.resolve(expr.expr)
def visit_literal(self, expr):
"""Visits a literal node"""
return # Literal has no subexpressions and does not reference variables
def visit_logical(self, expr):
"""Visits a logical node"""
self.visit_binary(expr) # No need to short circuit, so it's the same!
def visit_unary(self, expr):
"""Visits a unary node"""
self.resolve(expr.right)
def visit_del(self, stmt):
"""Visits a del statement"""
self.resolve(stmt.name)
def visit_break(self, stmt):
"""Visits a break statement"""
if self.current_loop == LoopType.NONE:
raise JAPLError("'break' outside loop")
def visit_get(self, expr):
"""Visits a property get expression"""
self.resolve(expr.object)
def visit_set(self, expr):
"""Visits a property set expression"""
self.resolve(expr.value)
self.resolve(expr.object)
def visit_this(self, expr):
"""Visits a 'this' expression"""
if self.current_class == ClassType.NONE:
raise JAPLError(expr.keyword, "'this' outside class")
self.resolve_local(expr, expr.keyword)
def visit_super(self, expr):
"""Visits a 'super' expression"""
if self.current_class == ClassType.NONE:
raise JAPLError(expr.keyword, "'super' outside class")
self.resolve_local(expr, expr.keyword)

0
JAPL/types/__init__.py Normal file
View File

11
JAPL/types/callable.py Normal file
View File

@ -0,0 +1,11 @@
class Callable(object):
"""A generic callable"""
def call(self, interpreter, arguments):
raise NotImplementedError
def __init__(self, arity):
"""Object constructor"""
self.arity = arity

24
JAPL/types/instance.py Normal file
View File

@ -0,0 +1,24 @@
from ..meta.exceptions import JAPLError
from ..meta.tokenobject import Token
class JAPLInstance:
"""A class instance"""
def __init__(self, klass):
self.klass = klass
self.fields = {}
def __repr__(self):
return f"<instance of '{self.klass.name}'>"
def get(self, name: Token):
if name.lexeme in self.fields:
return self.fields[name.lexeme]
meth = self.klass.get_method(name.lexeme)
if meth:
return meth.bind(self)
raise JAPLError(name, f"Undefined property '{name.lexeme}'")
def set(self, name: Token, value: object):
self.fields[name.lexeme] = value

35
JAPL/types/japlclass.py Normal file
View File

@ -0,0 +1,35 @@
from .callable import Callable
from .instance import JAPLInstance
class JAPLClass(Callable):
"""A JAPL class"""
def __init__(self, name: str, methods: dict, superclass):
self.name = name
self.methods = methods
self.superclass = superclass
if self.get_method("init"):
self.arity = self.get_method("init").arity
else:
self.arity = 0
def get_method(self, name: str):
if name in self.methods:
return self.methods[name]
superclass = self.superclass
while superclass:
if name in superclass.methods:
return superclass.methods[name]
superclass = superclass.superclass
def __repr__(self):
return f"<class '{self.name}'>"
def call(self, interpreter, arguments):
instance = JAPLInstance(self)
constructor = self.get_method("init")
if constructor:
constructor.bind(instance).call(interpreter, arguments)
return instance

175
JAPL/types/native.py Normal file
View File

@ -0,0 +1,175 @@
from .callable import Callable
import time
from ..meta.environment import Environment
from ..meta.exceptions import ReturnException
from .instance import JAPLInstance
from .japlclass import JAPLClass
class Clock(Callable):
"""JAPL's wrapper around time.time"""
def __init__(self, *_):
"""Object constructor"""
self.arity = 0
def call(self, *args):
return time.time()
def __repr__(self):
return f"<built-in function clock>"
class Type(Callable):
"""JAPL's wrapper around type"""
def __init__(self, *_):
"""Object constructor"""
self.arity = 1
def call(self, _, obj):
return type(obj[0])
def __repr__(self):
return f"<built-in function type>"
class Truthy(Callable):
"""JAPL's wrapper around bool"""
def __init__(self, *_):
"""Object constructor"""
self.arity = 1
def call(self, _, obj):
return bool(obj[0])
def __repr__(self):
return f"<built-in function truthy>"
class Stringify(Callable):
"""JAPL's wrapper around str()"""
def __init__(self, *_):
"""Object constructor"""
self.arity = 1
def call(self, _, obj):
return str(obj[0])
def __repr__(self):
return f"<built-in function stringify>"
class PrintFunction(Callable):
"""The print function"""
def __init__(self, *_):
"""Object constructor"""
self.arity = 1
def call(self, _, *args):
print(*args[0])
def __repr__(self):
return "<built-in function print>"
class IsInstance(Callable):
"""The isinstance function"""
def __init__(self, *_):
"""Object constructor"""
self.arity = 2
def call(self, _, args):
instance, klass = args
if not isinstance(instance, JAPLInstance):
return False
elif not isinstance(klass, JAPLClass):
return False
return instance.klass == klass
def __repr__(self):
return "<built-in function isinstance>"
class IsSubclass(Callable):
"""The isinstance function"""
def __init__(self, *_):
"""Object constructor"""
self.arity = 2
def call(self, _, args):
first, second = args
if not isinstance(first, JAPLClass):
return False
elif not isinstance(second, JAPLClass):
return False
return first.superclass == second
def __repr__(self):
return "<built-in function issubclass>"
class IsSuperclass(Callable):
"""The isinstance function"""
def __init__(self, *_):
"""Object constructor"""
self.arity = 2
def call(self, _, args):
first, second = args
if not isinstance(first, JAPLClass):
return False
elif not isinstance(second, JAPLClass):
return False
return second.superclass == first
def __repr__(self):
return "<built-in function issuperclass>"
class JAPLFunction(Callable):
"""A generic wrapper for user-defined functions"""
def __init__(self, declaration, closure):
"""Object constructor"""
self.declaration = declaration
self._repr = f"<function {self.declaration.name.lexeme}>"
self.arity = len(self.declaration.params)
self.closure = closure
def bind(self, obj: object):
"""Binds a method to an object"""
env = Environment(self.closure)
env.define("this", obj)
func = type(self)(self.declaration, env)
func._repr = f"<bound method {func.declaration.name.lexeme} of object {obj.klass.name}>"
return func
def call(self, interpreter, arguments):
scope = Environment(self.closure)
for name, value in zip(self.declaration.params, arguments):
scope.define(name.lexeme, value)
try:
interpreter.execute_block(self.declaration.body, scope)
except ReturnException as error:
return error.args[0]
def __repr__(self):
return self._repr

69
JAPL/wrapper.py Normal file
View File

@ -0,0 +1,69 @@
from JAPL.lexer import Lexer
from JAPL.meta.exceptions import ParseError, JAPLError
from JAPL.resolver import Resolver
from JAPL.parser import Parser
from JAPL.interpreter import Interpreter
class JAPL(object):
"""Wrapper around JAPL's interpreter, lexer and parser"""
interpreter = Interpreter()
resolver = Resolver(interpreter)
def run(self, file: str):
"""Runs a file"""
if not file:
self.repl()
else:
try:
with open(file) as source_file:
source_code = source_file.read()
lexer = Lexer(source_code)
tokens = lexer.lex()
parser = Parser(tokens)
ast = parser.parse()
self.resolver.resolve(ast)
self.interpreter.interpret(ast)
except FileNotFoundError:
print(f"Error: '{file}', no such file or directory")
except PermissionError:
print(f"Error' '{file}', permission denied")
except JAPLError as err:
if len(err.args) == 2:
token, message = err.args
print(f"An exception occurred at line {token.line}, file '{file}' at '{token.lexeme}': {message}")
else:
print(f"An exception occurred, details below\n\n{type(err).__name__}: {err}")
def repl(self):
"""Starts an interactive REPL"""
print("[JAPL 0.1.1 - Interactive REPL]")
while True:
try:
source = input(">>> ")
except (EOFError, KeyboardInterrupt):
print()
return
if not source:
continue
lexer = Lexer(source)
try:
tokens = lexer.lex()
ast = Parser(tokens).parse()
self.resolver.resolve(ast)
result = self.interpreter.interpret(ast)
except ParseError as err:
if len(err.args) == 2:
token, message = err.args
print(f"An exception occurred at line {token.line} at '{token.lexeme}': {message}")
else:
print(f"\nAn exception occurred, details below\n\nParseError: {err.args[0]}")
except JAPLError as error:
if len(error.args) == 2:
token, message = error.args
print(f"An exception occurred at line {token.line}, file 'stdin' at '{token.lexeme}': {message}")
else:
print(f"An exception occurred, details below\n\n{type(error).__name__}: {error}")

View File

@ -1,2 +1,66 @@
# japl-python
A POC (proof of concept) of the JAPL language written in Python 3
# japl
JAPL is an interpreted, dynamically-typed, garbage-collected and minimalistic programming language with C- and Java-like syntax.
# J.. what?
You may wonder what's the meaning of JAPL: well, it turns out to be an acronym
for __Just Another Programming Language__, but beware! Despite the name, the pronounciation is actually the same as "JPL".
## Some backstory
JAPL is born thanks to the amazing work of Bob Nystrom that wrote a book available completely for free
at [this](https://craftinginterpreters.com) link, where he describes the implementation of a simple language called Lox.
### What has been (or will be) added from Lox
- Possibility to delete variables with the `del` statement (Currently being reworked)
- `break` statement
- `continue` statement
- Multi-line comments (`/* like this */`)
- Nested comments
- Modulo division (`%`) and exponentiation (`**`)
- `OP_CONSTANT_LONG` is implemented
- Differentiation between integers and floating point numbers
- `inf` and `nan` types
- Possibility to have more than 255 locals in scope at any given time
- String slicing, with start:end syntax as well
- Strings are not interned (may change in the future)
- All entities are actually objects, even builtins
- Bitwise operators (AND, OR, XOR, NOT)
- Functions default and keyword arguments (__WIP__)
- A proper import system (__Coming soon__)
- Native asynchronous (`await`/`async fun`) support (__Coming soon__)
- Multiple inheritance (__Coming Soon__)
- Bytecode optimizations such as constant folding and stack caching (__Coming Soon__)
- Arbitrary-precision arithmetic (__Coming soon__)
- Generators (__Coming soon__)
- A standard library with collections, I/O utilities, scientific modules, etc (__Coming soon__)
- Multithreading and multiprocessing support with a global VM Lock like CPython (__Coming soon__)
- Multiple GC implementations which can be chosen at runtime or via CLI: bare refcount, refcount + generational GC, M&S (__Coming soon__)
- Exceptions (__Coming soon__)
- Optional JIT Compilation (__Coming soon__)
- Some syntax changes (maybe), e.g. get rid of semicolons
- Prototypes based system instead of classes (maybe)
Other than that, JAPL features closures, function definitions, classes, inheritance and static scoping. You can check
the provided example `.jpl` files in the repo to find out more about its syntax.
### Disclaimer
This project is currently a WIP (Work in Progress) and is not optimized nor complete.
The first version of the interpreter is written in Python, but a bytecode stack-based VM written in nim is being developed right now.
Also, the design of the language may change at any moment and all the source inside this repo
is alpha code quality, for now.
For other useful information, check the LICENSE file in this repo.
### Contributing
If you want to contribute, feel free to send a PR!
Right now there are some major issues with the virtual machine which need to be addressed
before the development can proceed, and some help is ~~desperately needed~~ greatly appreciated!
You can also contact me using the information available [here](https://github.com/nocturn9x)

125
examples/examples.jpl Normal file
View File

@ -0,0 +1,125 @@
// Example file to test JAPL's syntax
// Mathematical expressions
2 + 2;
-1 * 6;
3 * (9 / 2); // Parentheses for grouping
8 % 2; // Modulo division
6 ** 9; // Exponentiation
// Variable definition and assignment
var name = "bob"; // Dynamically typed
name = "joe"; // Can only be assigned if it's defined
del name; // Delete a variable
var foo; // Unitialized variables are equal to nil
// Scoping
var a = "global";
var b = "global1";
{ // open a new scope
var b = "local"; // Shadow the global variable
print a; // This falls back to the global scope
print b;
}
print a;
print b; // The outer scope isn't affected
/*
A multiline comment
yay!
*/
// Control flow statements
var n = 0;
while (n <= 10) { // While loops
if (n <= 5) { // If statements
print n;
}
n = n + 1;
}
for (var i = 0; i < 10; i = i + 1) { // For loops
print i;
}
// Functions
print clock(); // Function calls
fun count(n) { // Function definitions
if (n > 1) count(n - 1); // Recursion works
print n;
}
count(3);
// Closures work too!
var a = "global";
{
fun showA() {
print a;
}
showA();
var a = "block";
showA();
}
// Nested functions
fun makeCounter() {
var i = 0;
fun count() {
i = i + 1;
print i;
}
return count;
}
var counter = makeCounter();
counter(); // "1".
counter(); // "2".
// Classes
class Person {
init(name) { // Class initializer
this.name = name;
}
greet() { // Methods don't use the 'fun' keyword!
print "Hello, " + this.name;
}
}
var bob = Person("Bob"); // Object creation
bob.greet(); // Prints Hello, Bob
var greetbob = bob.greet; // Functions and methods are first-class objects! (classes are too)
greetbob();
class Male < Person { // Male inherits from person
init(name) {
super.init(name); // Inherits constructor behavior
this.sex = "male";
}
greet() {
super.greet(); // Inherits behavior from superclass
}
}
var mark = Male("Mark");
mark.greet();

19
examples/factorial.jpl Normal file
View File

@ -0,0 +1,19 @@
fun factorial(n) {
// Computes the factorial of n iteratively
if (n < 0) return nil;
if (n == 1 or n == 2) return n;
var fact = 1;
for (var i = 1; i < n + 1; i = i + 1) {
fact = fact * i;
}
return fact;
}
var start = clock();
print "Computing factorials from 0 to 200";
for (var i = 0; i < 201; i = i + 1) factorial(i);
var result = clock() - start;
print "Computed factorials in " + stringify(result) + " seconds";

12
examples/fib.jpl Normal file
View File

@ -0,0 +1,12 @@
// A recursive implementation of the fibonacci sequence
fun fib(n) {
if (n <= 1) return n;
return fib(n - 2) + fib(n - 1);
}
var start = clock();
fib(30);
var end = clock() - start;
print(end);

9
japl.py Normal file
View File

@ -0,0 +1,9 @@
import sys
from JAPL.wrapper import JAPL
if __name__ == "__main__":
if len(sys.argv) == 1:
JAPL().repl()
else:
JAPL().run(sys.argv[1])

1
requirements.txt Normal file
View File

@ -0,0 +1 @@
singledispatchmethod

16
setup.py Normal file
View File

@ -0,0 +1,16 @@
import setuptools
setuptools.setup(
name="JAPL - Just another programming language",
version="0.1.1",
author="nocturn9x",
author_email="nocturn9x@intellivoid.net",
description="The JAPL programming language",
packages=setuptools.find_packages(),
classifiers=[
"Programming Language :: Python :: 3",
"License :: OSI Approved :: MIT License",
"Operating System :: OS Independent",
],
python_requires='>=3.6',
)