CofeehousePy/deps/scikit-image/skimage/transform/integral.py

129 lines
4.4 KiB
Python

import numpy as np
def integral_image(image):
r"""Integral image / summed area table.
The integral image contains the sum of all elements above and to the
left of it, i.e.:
.. math::
S[m, n] = \sum_{i \leq m} \sum_{j \leq n} X[i, j]
Parameters
----------
image : ndarray
Input image.
Returns
-------
S : ndarray
Integral image/summed area table of same shape as input image.
References
----------
.. [1] F.C. Crow, "Summed-area tables for texture mapping,"
ACM SIGGRAPH Computer Graphics, vol. 18, 1984, pp. 207-212.
"""
S = image
for i in range(image.ndim):
S = S.cumsum(axis=i)
return S
def integrate(ii, start, end):
"""Use an integral image to integrate over a given window.
Parameters
----------
ii : ndarray
Integral image.
start : List of tuples, each tuple of length equal to dimension of `ii`
Coordinates of top left corner of window(s).
Each tuple in the list contains the starting row, col, ... index
i.e `[(row_win1, col_win1, ...), (row_win2, col_win2,...), ...]`.
end : List of tuples, each tuple of length equal to dimension of `ii`
Coordinates of bottom right corner of window(s).
Each tuple in the list containing the end row, col, ... index i.e
`[(row_win1, col_win1, ...), (row_win2, col_win2, ...), ...]`.
Returns
-------
S : scalar or ndarray
Integral (sum) over the given window(s).
Examples
--------
>>> arr = np.ones((5, 6), dtype=float)
>>> ii = integral_image(arr)
>>> integrate(ii, (1, 0), (1, 2)) # sum from (1, 0) to (1, 2)
array([3.])
>>> integrate(ii, [(3, 3)], [(4, 5)]) # sum from (3, 3) to (4, 5)
array([6.])
>>> # sum from (1, 0) to (1, 2) and from (3, 3) to (4, 5)
>>> integrate(ii, [(1, 0), (3, 3)], [(1, 2), (4, 5)])
array([3., 6.])
"""
start = np.atleast_2d(np.array(start))
end = np.atleast_2d(np.array(end))
rows = start.shape[0]
total_shape = ii.shape
total_shape = np.tile(total_shape, [rows, 1])
# convert negative indices into equivalent positive indices
start_negatives = start < 0
end_negatives = end < 0
start = (start + total_shape) * start_negatives + \
start * ~(start_negatives)
end = (end + total_shape) * end_negatives + \
end * ~(end_negatives)
if np.any((end - start) < 0):
raise IndexError('end coordinates must be greater or equal to start')
# bit_perm is the total number of terms in the expression
# of S. For example, in the case of a 4x4 2D image
# sum of image from (1,1) to (2,2) is given by
# S = + ii[2, 2]
# - ii[0, 2] - ii[2, 0]
# + ii[0, 0]
# The total terms = 4 = 2 ** 2(dims)
S = np.zeros(rows)
bit_perm = 2 ** ii.ndim
width = len(bin(bit_perm - 1)[2:])
# Sum of a (hyper)cube, from an integral image is computed using
# values at the corners of the cube. The corners of cube are
# selected using binary numbers as described in the following example.
# In a 3D cube there are 8 corners. The corners are selected using
# binary numbers 000 to 111. Each number is called a permutation, where
# perm(000) means, select end corner where none of the coordinates
# is replaced, i.e ii[end_row, end_col, end_depth]. Similarly, perm(001)
# means replace last coordinate by start - 1, i.e
# ii[end_row, end_col, start_depth - 1], and so on.
# Sign of even permutations is positive, while those of odd is negative.
# If 'start_coord - 1' is -ve it is labeled bad and not considered in
# the final sum.
for i in range(bit_perm): # for all permutations
# boolean permutation array eg [True, False] for '10'
binary = bin(i)[2:].zfill(width)
bool_mask = [bit == '1' for bit in binary]
sign = (-1)**sum(bool_mask) # determine sign of permutation
bad = [np.any(((start[r] - 1) * bool_mask) < 0)
for r in range(rows)] # find out bad start rows
corner_points = (end * (np.invert(bool_mask))) + \
((start - 1) * bool_mask) # find corner for each row
S += [sign * ii[tuple(corner_points[r])] if(not bad[r]) else 0
for r in range(rows)] # add only good rows
return S