CofeehousePy/deps/scikit-image/skimage/feature/match.py

98 lines
4.0 KiB
Python

import numpy as np
from scipy.spatial.distance import cdist
def match_descriptors(descriptors1, descriptors2, metric=None, p=2,
max_distance=np.inf, cross_check=True, max_ratio=1.0):
"""Brute-force matching of descriptors.
For each descriptor in the first set this matcher finds the closest
descriptor in the second set (and vice-versa in the case of enabled
cross-checking).
Parameters
----------
descriptors1 : (M, P) array
Descriptors of size P about M keypoints in the first image.
descriptors2 : (N, P) array
Descriptors of size P about N keypoints in the second image.
metric : {'euclidean', 'cityblock', 'minkowski', 'hamming', ...} , optional
The metric to compute the distance between two descriptors. See
`scipy.spatial.distance.cdist` for all possible types. The hamming
distance should be used for binary descriptors. By default the L2-norm
is used for all descriptors of dtype float or double and the Hamming
distance is used for binary descriptors automatically.
p : int, optional
The p-norm to apply for ``metric='minkowski'``.
max_distance : float, optional
Maximum allowed distance between descriptors of two keypoints
in separate images to be regarded as a match.
cross_check : bool, optional
If True, the matched keypoints are returned after cross checking i.e. a
matched pair (keypoint1, keypoint2) is returned if keypoint2 is the
best match for keypoint1 in second image and keypoint1 is the best
match for keypoint2 in first image.
max_ratio : float, optional
Maximum ratio of distances between first and second closest descriptor
in the second set of descriptors. This threshold is useful to filter
ambiguous matches between the two descriptor sets. The choice of this
value depends on the statistics of the chosen descriptor, e.g.,
for SIFT descriptors a value of 0.8 is usually chosen, see
D.G. Lowe, "Distinctive Image Features from Scale-Invariant Keypoints",
International Journal of Computer Vision, 2004.
Returns
-------
matches : (Q, 2) array
Indices of corresponding matches in first and second set of
descriptors, where ``matches[:, 0]`` denote the indices in the first
and ``matches[:, 1]`` the indices in the second set of descriptors.
"""
if descriptors1.shape[1] != descriptors2.shape[1]:
raise ValueError("Descriptor length must equal.")
if metric is None:
if np.issubdtype(descriptors1.dtype, bool):
metric = 'hamming'
else:
metric = 'euclidean'
kwargs = {}
# Scipy raises an error if p is passed as an extra argument when it isn't
# necessary for the chosen metric.
if metric == 'minkowski':
kwargs['p'] = p
distances = cdist(descriptors1, descriptors2, metric=metric, **kwargs)
indices1 = np.arange(descriptors1.shape[0])
indices2 = np.argmin(distances, axis=1)
if cross_check:
matches1 = np.argmin(distances, axis=0)
mask = indices1 == matches1[indices2]
indices1 = indices1[mask]
indices2 = indices2[mask]
if max_distance < np.inf:
mask = distances[indices1, indices2] < max_distance
indices1 = indices1[mask]
indices2 = indices2[mask]
if max_ratio < 1.0:
best_distances = distances[indices1, indices2]
distances[indices1, indices2] = np.inf
second_best_indices2 = np.argmin(distances[indices1], axis=1)
second_best_distances = distances[indices1, second_best_indices2]
second_best_distances[second_best_distances == 0] \
= np.finfo(np.double).eps
ratio = best_distances / second_best_distances
mask = ratio < max_ratio
indices1 = indices1[mask]
indices2 = indices2[mask]
matches = np.column_stack((indices1, indices2))
return matches