CofeehousePy/deps/scikit-image/doc/examples/transform/plot_transform_types.py

142 lines
5.4 KiB
Python

"""
===================================
Types of homographies
===================================
`Homographies <https://en.wikipedia.org/wiki/Homography>`_
are transformations of a Euclidean space that preserve the alignment of points.
Specific cases of homographies correspond to the conservation of more
properties, such as parallelism (affine transformation), shape (similar
transformation) or distances (Euclidean transformation).
Homographies on a 2D Euclidean space (i.e., for 2D grayscale or multichannel
images) are defined by a 3x3 matrix. All types of homographies can be defined
by passing either the transformation matrix, or the parameters of the simpler
transformations (rotation, scaling, ...) which compose the full transformation.
The different types of homographies available in scikit-image are
shown here, by increasing order of complexity (i.e. by reducing the number of
constraints). While we focus here on the mathematical properties of
transformations, tutorial
:ref:`sphx_glr_auto_examples_transform_plot_geometric.py` explains how to use
such transformations for various tasks such as image warping or parameter
estimation.
"""
import math
import numpy as np
import matplotlib.pyplot as plt
from skimage import data
from skimage import transform
from skimage import img_as_float
######################################################################
# Euclidean (rigid) transformation
# =================================
#
# A `Euclidean transformation <https://en.wikipedia.org/wiki/Rigid_transformation>`_,
# also called rigid transformation, preserves the Euclidean distance between
# pairs of points. It can be described as a rotation about the origin
# followed by a translation.
tform = transform.EuclideanTransform(
rotation=np.pi / 12.,
translation = (100, -20)
)
print(tform.params)
######################################################################
# Now let's apply this transformation to an image. Because we are trying
# to reconstruct the *image* after transformation, it is not useful to see
# where a *coordinate* from the input image ends up in the output, which is
# what the transform gives us. Instead, for every pixel (coordinate) in the
# output image, we want to figure out where in the input image it comes from.
# Therefore, we need to use the inverse of ``tform``, rather than ``tform``
# directly.
img = img_as_float(data.chelsea())
tf_img = transform.warp(img, tform.inverse)
fig, ax = plt.subplots()
ax.imshow(tf_img)
_ = ax.set_title('Euclidean transformation')
######################################################################
# For a rotation around the center of the image, one can
# compose a translation to change the origin, a rotation, and finally
# the inverse of the first translation.
rotation = transform.EuclideanTransform(rotation=np.pi/3)
shift = transform.EuclideanTransform(translation=-np.array(img.shape[:2]) / 2)
# Compose transforms by multiplying their matrices
matrix = np.linalg.inv(shift.params) @ rotation.params @ shift.params
tform = transform.EuclideanTransform(matrix)
tf_img = transform.warp(img, tform.inverse)
fig, ax = plt.subplots()
_ = ax.imshow(tf_img)
######################################################################
# Similarity transformation
# =================================
#
# A `similarity transformation <https://en.wikipedia.org/wiki/Similarity_(geometry)>`_
# preserves the shape of objects. It combines scaling, translation and rotation.
tform = transform.SimilarityTransform(
scale=0.5,
rotation=np.pi/12,
translation=(100, 50))
print(tform.params)
tf_img = transform.warp(img, tform.inverse)
fig, ax = plt.subplots()
ax.imshow(tf_img)
_ = ax.set_title('Similarity transformation')
######################################################################
# Affine transformation
# =================================
#
# An `affine transformation <https://en.wikipedia.org/wiki/Affine_transformation>`_
# preserves lines (hence the alignment of objects), as well as parallelism
# between lines. It can be decomposed into a similarity transform and a
# `shear transformation <https://en.wikipedia.org/wiki/Shear_mapping>`_.
tform = transform.AffineTransform(
shear=np.pi/6,
)
print(tform.params)
tf_img = transform.warp(img, tform.inverse)
fig, ax = plt.subplots()
ax.imshow(tf_img)
_ = ax.set_title('Affine transformation')
######################################################################
# Projective transformation (homographies)
# ========================================
#
# A `homography <https://en.wikipedia.org/wiki/Homography>`_, also called
# projective transformation, preserves lines but not necessarily
# parallelism.
matrix = np.array([[1, -0.5, 100],
[0.1, 0.9, 50],
[0.0015, 0.0015, 1]])
tform = transform.ProjectiveTransform(matrix=matrix)
tf_img = transform.warp(img, tform.inverse)
fig, ax = plt.subplots()
ax.imshow(tf_img)
ax.set_title('Projective transformation')
# sphinx_gallery_thumbnail_number = 5
plt.show()
######################################################################
# See also
# ========================================
#
# * :ref:`sphx_glr_auto_examples_transform_plot_geometric.py` for composing
# transformations or estimating their parameters
# * :ref:`sphx_glr_auto_examples_transform_plot_rescale.py` for simple
# rescaling and resizing operations
# * :func:`skimage.transform.rotate` for rotating an image around its center
#