CofeehousePy/deps/scikit-image/doc/examples/transform/plot_geometric.py

125 lines
4.0 KiB
Python

"""
===============================
Using geometric transformations
===============================
In this example, we will see how to use geometric transformations in the context
of image processing.
"""
import math
import numpy as np
import matplotlib.pyplot as plt
from skimage import data
from skimage import transform
######################################################################
# Basics
# ======
#
# Several different geometric transformation types are supported: similarity,
# affine, projective and polynomial. For a tutorial on the available types of
# transformations, see :ref:`sphx_glr_auto_examples_transform_plot_transform_types.py`.
#
# Geometric transformations can either be created using the explicit
# parameters (e.g. scale, shear, rotation and translation) or the
# transformation matrix.
#
# First we create a transformation using explicit parameters:
tform = transform.SimilarityTransform(scale=1, rotation=math.pi/2,
translation=(0, 1))
print(tform.params)
######################################################################
# Alternatively you can define a transformation by the transformation matrix
# itself:
matrix = tform.params.copy()
matrix[1, 2] = 2
tform2 = transform.SimilarityTransform(matrix)
######################################################################
# These transformation objects can then be used to apply forward and inverse
# coordinate transformations between the source and destination coordinate
# systems:
coord = [1, 0]
print(tform2(coord))
print(tform2.inverse(tform(coord)))
######################################################################
# Image warping
# =============
#
# Geometric transformations can also be used to warp images:
text = data.text()
tform = transform.SimilarityTransform(scale=1, rotation=math.pi/4,
translation=(text.shape[0]/2, -100))
rotated = transform.warp(text, tform)
back_rotated = transform.warp(rotated, tform.inverse)
fig, ax = plt.subplots(nrows=3)
ax[0].imshow(text, cmap=plt.cm.gray)
ax[1].imshow(rotated, cmap=plt.cm.gray)
ax[2].imshow(back_rotated, cmap=plt.cm.gray)
for a in ax:
a.axis('off')
plt.tight_layout()
######################################################################
# Parameter estimation
# ====================
#
# In addition to the basic functionality mentioned above you can also
# estimate the parameters of a geometric transformation using the least-
# squares method.
#
# This can amongst other things be used for image registration or
# rectification, where you have a set of control points or
# homologous/corresponding points in two images.
#
# Let's assume we want to recognize letters on a photograph which was not
# taken from the front but at a certain angle. In the simplest case of a
# plane paper surface the letters are projectively distorted. Simple matching
# algorithms would not be able to match such symbols. One solution to this
# problem would be to warp the image so that the distortion is removed and
# then apply a matching algorithm:
text = data.text()
src = np.array([[0, 0], [0, 50], [300, 50], [300, 0]])
dst = np.array([[155, 15], [65, 40], [260, 130], [360, 95]])
tform3 = transform.ProjectiveTransform()
tform3.estimate(src, dst)
warped = transform.warp(text, tform3, output_shape=(50, 300))
fig, ax = plt.subplots(nrows=2, figsize=(8, 3))
ax[0].imshow(text, cmap=plt.cm.gray)
ax[0].plot(dst[:, 0], dst[:, 1], '.r')
ax[1].imshow(warped, cmap=plt.cm.gray)
for a in ax:
a.axis('off')
plt.tight_layout()
plt.show()
######################################################################
# The above estimation relies on accurate selection of corresponding points.
# An alternative approach called the
# `RANSAC algorithm <https://en.wikipedia.org/wiki/Random_sample_consensus>`_
# is useful when the correspondence points are not perfectly accurate.
# See the :ref:`sphx_glr_auto_examples_transform_plot_matching.py` tutorial
# for an in-depth description of how to use this approach in scikit-image.