CofeehousePy/deps/scikit-image/doc/examples/filters/plot_denoise_wavelet.py

106 lines
4.1 KiB
Python

"""
=================
Wavelet denoising
=================
Wavelet denoising relies on the wavelet representation of the image.
Gaussian noise tends to be represented by small values in the wavelet domain
and can be removed by setting coefficients below a given threshold to zero
(hard thresholding) or shrinking all coefficients toward zero by a given amount
(soft thresholding).
In this example, we illustrate two different methods for wavelet coefficient
threshold selection: BayesShrink and VisuShrink.
VisuShrink
----------
The VisuShrink approach employs a single, universal threshold to all wavelet
detail coefficients. This threshold is designed to remove additive Gaussian
noise with high probability, which tends to result in overly smooth image
appearance. By specifying a sigma that is smaller than the true noise standard
deviation, a more visually agreeable result can be obtained.
BayesShrink
-----------
The BayesShrink algorithm is an adaptive approach to wavelet soft thresholding
where a unique threshold is estimated for each wavelet subband. This generally
results in an improvement over what can be obtained with a single threshold.
"""
import matplotlib.pyplot as plt
from skimage.restoration import (denoise_wavelet, estimate_sigma)
from skimage import data, img_as_float
from skimage.util import random_noise
from skimage.metrics import peak_signal_noise_ratio
original = img_as_float(data.chelsea()[100:250, 50:300])
sigma = 0.12
noisy = random_noise(original, var=sigma**2)
fig, ax = plt.subplots(nrows=2, ncols=3, figsize=(8, 5),
sharex=True, sharey=True)
plt.gray()
# Estimate the average noise standard deviation across color channels.
sigma_est = estimate_sigma(noisy, multichannel=True, average_sigmas=True)
# Due to clipping in random_noise, the estimate will be a bit smaller than the
# specified sigma.
print(f"Estimated Gaussian noise standard deviation = {sigma_est}")
im_bayes = denoise_wavelet(noisy, multichannel=True, convert2ycbcr=True,
method='BayesShrink', mode='soft',
rescale_sigma=True)
im_visushrink = denoise_wavelet(noisy, multichannel=True, convert2ycbcr=True,
method='VisuShrink', mode='soft',
sigma=sigma_est, rescale_sigma=True)
# VisuShrink is designed to eliminate noise with high probability, but this
# results in a visually over-smooth appearance. Repeat, specifying a reduction
# in the threshold by factors of 2 and 4.
im_visushrink2 = denoise_wavelet(noisy, multichannel=True, convert2ycbcr=True,
method='VisuShrink', mode='soft',
sigma=sigma_est/2, rescale_sigma=True)
im_visushrink4 = denoise_wavelet(noisy, multichannel=True, convert2ycbcr=True,
method='VisuShrink', mode='soft',
sigma=sigma_est/4, rescale_sigma=True)
# Compute PSNR as an indication of image quality
psnr_noisy = peak_signal_noise_ratio(original, noisy)
psnr_bayes = peak_signal_noise_ratio(original, im_bayes)
psnr_visushrink = peak_signal_noise_ratio(original, im_visushrink)
psnr_visushrink2 = peak_signal_noise_ratio(original, im_visushrink2)
psnr_visushrink4 = peak_signal_noise_ratio(original, im_visushrink4)
ax[0, 0].imshow(noisy)
ax[0, 0].axis('off')
ax[0, 0].set_title('Noisy\nPSNR={:0.4g}'.format(psnr_noisy))
ax[0, 1].imshow(im_bayes)
ax[0, 1].axis('off')
ax[0, 1].set_title(
'Wavelet denoising\n(BayesShrink)\nPSNR={:0.4g}'.format(psnr_bayes))
ax[0, 2].imshow(im_visushrink)
ax[0, 2].axis('off')
ax[0, 2].set_title(
'Wavelet denoising\n(VisuShrink, $\\sigma=\\sigma_{est}$)\n'
'PSNR=%0.4g' % psnr_visushrink)
ax[1, 0].imshow(original)
ax[1, 0].axis('off')
ax[1, 0].set_title('Original')
ax[1, 1].imshow(im_visushrink2)
ax[1, 1].axis('off')
ax[1, 1].set_title(
'Wavelet denoising\n(VisuShrink, $\\sigma=\\sigma_{est}/2$)\n'
'PSNR=%0.4g' % psnr_visushrink2)
ax[1, 2].imshow(im_visushrink4)
ax[1, 2].axis('off')
ax[1, 2].set_title(
'Wavelet denoising\n(VisuShrink, $\\sigma=\\sigma_{est}/4$)\n'
'PSNR=%0.4g' % psnr_visushrink4)
fig.tight_layout()
plt.show()