""" =============================== Evaluating segmentation metrics =============================== When trying out different segmentation methods, how do you know which one is best? If you have a *ground truth* or *gold standard* segmentation, you can use various metrics to check how close each automated method comes to the truth. In this example we use an easy-to-segment image as an example of how to interpret various segmentation metrics. We will use the the adapted Rand error and the variation of information as example metrics, and see how *oversegmentation* (splitting of true segments into too many sub-segments) and *undersegmentation* (merging of different true segments into a single segment) affect the different scores. """ import numpy as np import matplotlib.pyplot as plt from scipy import ndimage as ndi from skimage import data from skimage.metrics import (adapted_rand_error, variation_of_information) from skimage.filters import sobel from skimage.measure import label from skimage.util import img_as_float from skimage.feature import canny from skimage.morphology import remove_small_objects from skimage.segmentation import (morphological_geodesic_active_contour, inverse_gaussian_gradient, watershed, mark_boundaries) image = data.coins() ############################################################################### # First, we generate the true segmentation. For this simple image, we know # exact functions and parameters that will produce a perfect segmentation. In # a real scenario, typically you would generate ground truth by manual # annotation or "painting" of a segmentation. elevation_map = sobel(image) markers = np.zeros_like(image) markers[image < 30] = 1 markers[image > 150] = 2 im_true = watershed(elevation_map, markers) im_true = ndi.label(ndi.binary_fill_holes(im_true - 1))[0] ############################################################################### # Next, we create three different segmentations with different characteristics. # The first one uses :func:`skimage.segmentation.watershed` with # *compactness*, which is a useful initial segmentation but too fine as a # final result. We will see how this causes the oversegmentation metrics to # shoot up. edges = sobel(image) im_test1 = watershed(edges, markers=468, compactness=0.001) ############################################################################### # The next approach uses the Canny edge filter, :func:`skimage.filters.canny`. # This is a very good edge finder, and gives balanced results. edges = canny(image) fill_coins = ndi.binary_fill_holes(edges) im_test2 = ndi.label(remove_small_objects(fill_coins, 21))[0] ############################################################################### # Finally, we use morphological geodesic active contours, # :func:`skimage.segmentation.morphological_geodesic_active_contour`, a method # that generally produces good results, but requires a long time to converge on # a good answer. We purposefully cut short the procedure at 100 iterations, so # that the final result is *undersegmented*, meaning that many regions are # merged into one segment. We will see the corresponding effect on the # segmentation metrics. image = img_as_float(image) gradient = inverse_gaussian_gradient(image) init_ls = np.zeros(image.shape, dtype=np.int8) init_ls[10:-10, 10:-10] = 1 im_test3 = morphological_geodesic_active_contour(gradient, iterations=100, init_level_set=init_ls, smoothing=1, balloon=-1, threshold=0.69) im_test3 = label(im_test3) method_names = ['Compact watershed', 'Canny filter', 'Morphological Geodesic Active Contours'] short_method_names = ['Compact WS', 'Canny', 'GAC'] precision_list = [] recall_list = [] split_list = [] merge_list = [] for name, im_test in zip(method_names, [im_test1, im_test2, im_test3]): error, precision, recall = adapted_rand_error(im_true, im_test) splits, merges = variation_of_information(im_true, im_test) split_list.append(splits) merge_list.append(merges) precision_list.append(precision) recall_list.append(recall) print(f"\n## Method: {name}") print(f"Adapted Rand error: {error}") print(f"Adapted Rand precision: {precision}") print(f"Adapted Rand recall: {recall}") print(f"False Splits: {splits}") print(f"False Merges: {merges}") fig, axes = plt.subplots(2, 3, figsize=(9, 6), constrained_layout=True) ax = axes.ravel() ax[0].scatter(merge_list, split_list) for i, txt in enumerate(short_method_names): ax[0].annotate(txt, (merge_list[i], split_list[i]), verticalalignment='center') ax[0].set_xlabel('False Merges (bits)') ax[0].set_ylabel('False Splits (bits)') ax[0].set_title('Split Variation of Information') ax[1].scatter(precision_list, recall_list) for i, txt in enumerate(short_method_names): ax[1].annotate(txt, (precision_list[i], recall_list[i]), verticalalignment='center') ax[1].set_xlabel('Precision') ax[1].set_ylabel('Recall') ax[1].set_title('Adapted Rand precision vs. recall') ax[1].set_xlim(0, 1) ax[1].set_ylim(0, 1) ax[2].imshow(mark_boundaries(image, im_true)) ax[2].set_title('True Segmentation') ax[2].set_axis_off() ax[3].imshow(mark_boundaries(image, im_test1)) ax[3].set_title('Compact Watershed') ax[3].set_axis_off() ax[4].imshow(mark_boundaries(image, im_test2)) ax[4].set_title('Edge Detection') ax[4].set_axis_off() ax[5].imshow(mark_boundaries(image, im_test3)) ax[5].set_title('Morphological GAC') ax[5].set_axis_off() plt.show()