""" ================================================== Comparing edge-based and region-based segmentation ================================================== In this example, we will see how to segment objects from a background. We use the ``coins`` image from ``skimage.data``, which shows several coins outlined against a darker background. """ import numpy as np import matplotlib.pyplot as plt from skimage import data from skimage.exposure import histogram coins = data.coins() hist, hist_centers = histogram(coins) fig, axes = plt.subplots(1, 2, figsize=(8, 3)) axes[0].imshow(coins, cmap=plt.cm.gray) axes[0].axis('off') axes[1].plot(hist_centers, hist, lw=2) axes[1].set_title('histogram of gray values') ###################################################################### # # Thresholding # ============ # # A simple way to segment the coins is to choose a threshold based on the # histogram of gray values. Unfortunately, thresholding this image gives a # binary image that either misses significant parts of the coins or merges # parts of the background with the coins: fig, axes = plt.subplots(1, 2, figsize=(8, 3), sharey=True) axes[0].imshow(coins > 100, cmap=plt.cm.gray) axes[0].set_title('coins > 100') axes[1].imshow(coins > 150, cmap=plt.cm.gray) axes[1].set_title('coins > 150') for a in axes: a.axis('off') plt.tight_layout() ###################################################################### # Edge-based segmentation # ======================= # # Next, we try to delineate the contours of the coins using edge-based # segmentation. To do this, we first get the edges of features using the # Canny edge-detector. from skimage.feature import canny edges = canny(coins) fig, ax = plt.subplots(figsize=(4, 3)) ax.imshow(edges, cmap=plt.cm.gray) ax.set_title('Canny detector') ax.axis('off') ###################################################################### # These contours are then filled using mathematical morphology. from scipy import ndimage as ndi fill_coins = ndi.binary_fill_holes(edges) fig, ax = plt.subplots(figsize=(4, 3)) ax.imshow(fill_coins, cmap=plt.cm.gray) ax.set_title('filling the holes') ax.axis('off') ###################################################################### # Small spurious objects are easily removed by setting a minimum size for # valid objects. from skimage import morphology coins_cleaned = morphology.remove_small_objects(fill_coins, 21) fig, ax = plt.subplots(figsize=(4, 3)) ax.imshow(coins_cleaned, cmap=plt.cm.gray) ax.set_title('removing small objects') ax.axis('off') ###################################################################### # However, this method is not very robust, since contours that are not # perfectly closed are not filled correctly, as is the case for one unfilled # coin above. # # Region-based segmentation # ========================= # # We therefore try a region-based method using the watershed transform. # First, we find an elevation map using the Sobel gradient of the image. from skimage.filters import sobel elevation_map = sobel(coins) fig, ax = plt.subplots(figsize=(4, 3)) ax.imshow(elevation_map, cmap=plt.cm.gray) ax.set_title('elevation map') ax.axis('off') ###################################################################### # Next we find markers of the background and the coins based on the extreme # parts of the histogram of gray values. markers = np.zeros_like(coins) markers[coins < 30] = 1 markers[coins > 150] = 2 fig, ax = plt.subplots(figsize=(4, 3)) ax.imshow(markers, cmap=plt.cm.nipy_spectral) ax.set_title('markers') ax.axis('off') ###################################################################### # Finally, we use the watershed transform to fill regions of the elevation # map starting from the markers determined above: from skimage import segmentation segmentation_coins = segmentation.watershed(elevation_map, markers) fig, ax = plt.subplots(figsize=(4, 3)) ax.imshow(segmentation_coins, cmap=plt.cm.gray) ax.set_title('segmentation') ax.axis('off') ###################################################################### # This last method works even better, and the coins can be segmented and # labeled individually. from skimage.color import label2rgb segmentation_coins = ndi.binary_fill_holes(segmentation_coins - 1) labeled_coins, _ = ndi.label(segmentation_coins) image_label_overlay = label2rgb(labeled_coins, image=coins, bg_label=0) fig, axes = plt.subplots(1, 2, figsize=(8, 3), sharey=True) axes[0].imshow(coins, cmap=plt.cm.gray) axes[0].contour(segmentation_coins, [0.5], linewidths=1.2, colors='y') axes[1].imshow(image_label_overlay) for a in axes: a.axis('off') plt.tight_layout() plt.show()